PCT # WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau | INTERNATIONAL APPLICATION PUBLISH | HED I | UNDER THE PATENT COOPERATION TREATY (PCT) | |---|----------|---| | (51) International Patent Classification ⁶ : C08F 20/12, C09J 4/02 | A1 | (11) International Publication Number: WO 97/17383 | | Coor 2012, Cosj 402 | | (43) International Publication Date: 15 May 1997 (15.05.97) | | (21) International Application Number: PCT/US | | BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, | | (22) International Filing Date: 30 September 1996 (2 | 30.09.9 | LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, | | (30) Priority Data: | | PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), | | 08/554,883 7 November 1995 (07.11.95 |) ! | US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, | | (71) Applicant: MINNESOTA MINING AND MANUF ING COMPANY [US/US]; 3M Center, P.O. Bo Saint Paul, MN 55133-3427 (US). | | CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). | | (72) Inventor: DEVINY, E., John; P.O. Box 33427, Saint I 55133-3427 (US). | Paul, M | Published N With international search report. | | (74) Agents: O'SHAUGHNESSY, Christine, T. et al.; M. Mining and Manufacturing Company, Office of In Property Counsel, P.O. Box 33427, Saint Paul, MI 3427 (US). | tellectu | ual | | | | | | • | | | | | | | | | | | (54) Title: INITIATOR SYSTEM AND ADHESIVE COMPOSITION MADE THEREWITH #### (57) Abstract Systems for initiating the polymerization of acrylic monomers comprising (1) organoborane amine complexes and (2) decomplexers comprising at least one anhydride group. Adhesive compositions prepared from the initiator systems advantageously exhibit low levels of mobile constituents, excellent solvent resistance, and good adhesion to low energy surfaces. Jame mienty as 5,883,208 ### FOR THE PURPOSES OF INFORMATION ONLY Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT. | AM | Armenia | GB | United Kingdom | MW | Malawi | |----|--------------------------|----|------------------------------|-----|--------------------------| | AT | Austria | GE | Georgia | MX | Mexico . | | AU | Australia | GN | Guinea | NE | Niger | | BB | Barbados | GR | Greece | NL | Netherlands | | BE | Belgium | HU | Hungary | NO | Norway | | BF | Burkina Faso | IE | Ireland | NZ | New Zealand | | BG | Bulgaria | IT | Italy | PL | Poland | | BJ | Benin | JP | Japan | PT | Portugal | | BR | Brazil | KE | Kenya | RO | Romania | | BY | Belarus | KG | Kyrgystan | RU | Russian Federation | | CA | Canada | KP | Democratic People's Republic | SD | Sudan | | CF | Central African Republic | | of Korea | SE | Sweden | | CG | Congo | KR | Republic of Korea | SG | Singapore | | CH | Switzerland | KZ | Kazakhstan | SI | Slovenia | | CI | Côte d'Ivoire | u | Liechtenstein | SK | Slovakia | | CM | Cameroon | LK | Sri Lanka | SN | Senegal | | CN | China | LR | Liberia | SZ | Swaziland | | CS | Czechoslovakia | LT | Lithuania | TD | Chad | | CZ | Czech Republic | LU | Luxembourg | TG. | Togo | | DE | Germany | LV | Latvia | TJ | Tajikistan | | DK | Denmark | MC | Monaco | TT | Trinidad and Tobago | | EE | Estonia | MD | Republic of Moldova | UA | Ukraine | | ES | Spain | MG | Madagascar | UG | Uganda | | FI | Finland | ML | Mali | US | United States of America | | FR | France | MN | Mongolia | UZ | Uzbekistan | | GA | Gabon | MR | Mauritania | VN | Viet Nam | # INITIATOR SYSTEM AND ADHESIVE COMPOSITION MADE THEREWITH #### Field of the Invention 5 10 15 20 This invention relates generally to systems capable of initiating the polymerization of acrylic monomers. More specifically, the invention relates to those initiator systems comprising (1) organoborane amine complexes and (2) decomplexers comprising at least one anhydride group. The invention further relates to the use of these systems for initiating the polymerization of acrylic monomers, as well as acrylic adhesive compositions made therewith. Adhesive compositions having low levels of mobile constituents, excellent solvent resistance, and good adhesion to low energy surfaces are advantageously provided. #### Description of the Related Art Systems for initiating the polymerization of acrylic monomers to make adhesive compositions are known in the art. U.S. Patent Nos. 5,106,928, 5,286,821, and 5,310,835, for example, disclose a two part initiator system that is reportedly useful in acrylic adhesive compositions. The first part of this two part system includes a stable organoborane amine complex and the second part includes an activator. The activator liberates the organoborane compound by removing the amine group, thereby allowing the organoborane compound to initiate the polymerization process. Activators are also sometimes referred to as liberators or decomplexers. The organoborane compound of the complex has the general formula: 25 where R, R₁ and R₂ are either alkyl groups having 1 to 10 carbon atoms or phenyl groups. Useful amine compounds for the complex include n-octylamine, 1,6-diaminohexane, diethylamine, dibutylamine, diethylenetriamine, dipropylenediamine, ammonia, 1,3-propylenediamine, and 1,2-propylenediamine. U.S. Patent No. 5,286,821 reports that suitable activators for liberating the organoborane compound include aldehydes having the general structure: ### R-(CHO)x wherein R is alkyl of 1 to 10 carbon atoms or aryl having 6 to 10 carbon atoms and x is 1 to 2. Examples include benzaldehyde, o-, m-, p-nitrobenzaldehyde, 2,4-dichlorobenzaldehyde, p-tolylaldehyde, and 3-methoxy-4 hydroxybenzaldehyde. 5 10 15 20 25 30 U.S. Patents 5,310,835 and 5,106,928 reports that suitable activators also include organic acids having the structure: #### R-COOH wherein R is H, alkyl, or alkenyl having 1 to 8 carbon atoms. Examples include acrylic acid, methacrylic acid, benzoic acid, and p-methoxybenzoic acid. Fujisawa, Imai, and Mashuhara also describe a system for initiating the polymerization of methyl methacrylate. See Reports of the Institute for Medical and Dental Engineering, 3, 64 (1969). The system comprises a trialkylborane amine complex and an activator such as the chloride of methacrylic or n-butane sulfonic acid, terephtalic acid chloride, benzoyl chloride, p-toluene sulfonic acid chloride, benzene sulfonic acid chloride, methane sulfonic acid chloride, toluene diisocyanate, adipic acid chloride, o-tolyl isocyanate, acetyl chloride, and anhydrous acetic acid. The initiator system is reportedly useful in providing fast curing resins for dental applications. Activators (sometimes also referred to as decomplexers) liberate the organoborane compound by bonding (either covalently or ionically) to the amine to form an activator-amine constituent. Most activator-amine constituents remain in the adhesive composition as a mobile constituent that is not incorporated into the polymerized adhesive per se. In general, mobile constituents in adhesive compositions may cause performance problems when, for example, they migrate to the surface of the adhesive thereby disrupting the bond interface. Mobile constituents are also susceptible to attack by solvents, thereby making the adhesive composition less suitable for applications where exposure to solvents is unavoidable. WO 97/17383 PCT/US96/15706. A need exists for initiator systems which provide acrylic adhesive compositi ns having reduced levels of mobile constituents and improved solvent resistance. Such adhesives are less susceptible to performance problems due to migration of mobile constituents to the bond interface and can also be used in various manufacturing applications where adhesives are exposed to organic vapors, oils, fuels, and other solvents such as methylethylketone, tetrahydrofuran, and the like. 5 10 15 20 25 #### **SUMMARY OF THE INVENTION** This invention provides systems capable of initiating the polymerization of acrylic monomers. More specifically, the invention provides initiator systems comprising (1) an organoborane amine complex and (2) a decomplexer comprising at least one anhydride group. The term "decomplexer" means a compound capable of liberating the organoborane compound, thereby allowing the organoborane to initiate the polymerization process. Decomplexers are also sometimes referred to as "activators" or "liberators." As used herein, each of these terms has the same meaning. In the present invention, the anhydride group of the decomplexer is capable of forming a covalent bond with the amine portion of the organoborane amine complex to liberate the organoborane compound. The decomplexer of the invention comprises at least one anhydride group. Preferably, the anhydride has one of the following structures: $$\begin{array}{ccc} O & O \\ R_1 - C - O - C - R \end{array}$$ or $$\begin{array}{ccc} O & O \\ O & O \\ C & O \end{array}$$ Each of the R₁ and R₂ groups may independently be an aliphatic group (i.e., a straight- or branched-chain arrangement of carbon atoms falling into one of three subgroups, namely, alkane, alkene and alkyne groups); a cycloaliphatic group (i.e., a non-aromatic cyclic hydrocarbon structure); or an aromatic group (i.e., a cyclic hydrocarbon structure that is fully unsaturated). Of these three, aliphatic and aromatic groups are preferred. Preferred aliphatic groups comprise 1 to 17 carbon atoms, more preferably 2 to 9 carbon atoms. Preferred aromatic groups include benzene and benzene substituted with aliphatic groups comprising 1 to 4 carbon atoms. 5 10 15 20 25
R₃ is a divalent organic radical that completes a cyclic structure with the anhydride group to form, for example, a 5 or 6 member ring. The term "divalent organic radical" means an organic moiety wherein the available valencies are on carbon atoms. R₃ may be substituted with aliphatic, cycloaliphatic or aromatic groups, preferably aliphatic groups comprising 1 to 12, more preferably 1 to 4, carbon atoms. R₃ may also contain a heteroatom such as oxygen or nitrogen with the proviso that the heteroatom is not adjacent to the anhydride functionality. R₃ may also be part of a fused ring structure. The fused ring structure may be cycloaliphatic or aromatic. The term "aromatic" in reference to a fused ring structure means that at least one carbonyl group is attached to an aromatic group. The term "cycloaliphatic" is intended to include all other non-aromatic fused ring structures. The fused ring may further be substituted with aliphatic groups, preferably those groups having 1 to 4 carbon atoms, most preferably 1 carbon atom. The organoborane amine complex of the system of the invention comprises an amine portion and an organoborane portion. The amine portion of the complex may comprise one or more amine groups. The anhydride group of the decomplexer reacts with the amine portion of the organoborane amine complex to form a decomplexer-amine reaction product. The organoborane is thereby liberated whereupon it is capable of initiating polymerization of the acrylic monomer(s). Preferably, the decomplexer comprises at least one free radically polymerizable group that is capable of forming a covalent bond with acrylic monomer. In this case, the decomplexer-amine reaction product is capable of forming covalent bonds with acrylic monomer(s) and can be incorporated into the polymerized adhesive per se. This results in a reduced level of mobile constituents (i.e., those materials capable of migrating r diffusing through the cured adhesive). Even more preferably, the decomplexer reacts with the amine portion of the organoborane amine complex to form a decomplexer-amine reaction product comprising more than one free radically polymerizable group. In this case, the decomplexer not only provides a reduced level of mobile constituents, but also provides polymerized adhesive compositions having good solvent resistance. 5 10 15 20 25 30 As stated previously, the system of the invention can be used to initiate the polymerization of acrylic monomer(s). Consequently, the invention also relates to a polymerizable acrylic composition that comprises at least one acrylic monomer, an effective amount of an organoborane amine complex, and an effective amount of the decomplexer of the invention for liberating the organoborane to initiate polymerization of the at least one acrylic monomer. A wide variety of acrylic monomers may be used, for example, monofunctional acrylate ester, monofunctional methacrylate ester, substituted derivatives of the foregoing, and blends of the foregoing. Acrylic compositions of the invention are uniquely useful in providing adhesives, and adhesive compositions of the invention advantageously provide reduced levels of mobile constituents, excellent solvent resistance, and adhesion to low surface energy plastics such as polyethylene and polytetrafluroethylene. The term "low energy surface" means those materials having a surface energy of less than 45 mJ/m², more typically less than about 35-40 mJ/m². In another aspect, the invention relates to a method of initiating the polymerization of an acrylic monomer, the method comprising the steps of providing at least one acrylic monomer, blending the at least one acrylic monomer with the components of the polymerization initiator system according to the invention, and initiating polymerization of the at least one acrylic monomer. As indicated above, a decomplexer-amine reaction product is formed when the decomplexer is combined with the organoborane amine complex. When the decomplexer-amine reaction product comprises at least one free radically polymerizable group capable of forming a covalent bond with acrylic monomer, 5 10 15 20 25 polymerized acrylic compositions having a reduced level of mobile constituents are advantageously provided. Furtherm re, when the decomplexer-amine reaction product comprises more than one free radically polymerizable group, this method may be used to prepare a polymerized adhesive composition having improved solvent resistance. # DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Decomplexer The decomplexer of the invention comprises at least one anhydride group. Preferably, the anhydride has one of the following structures: $$\begin{matrix} O & O \\ \parallel & \parallel \\ R_1 - C - O - C - R_2 \end{matrix}$$ ог Each of the R₁ and R₂ groups may independently be an aliphatic group (i.e., a straight- or branched-chain arrangement of carbon atoms falling into one of three subgroups, namely, alkane, alkene and alkyne groups); a cycloaliphatic group (i.e., a non-aromatic cyclic hydrocarbon structure); or an aromatic group (i.e., a cyclic hydrocarbon structure that is fully unsaturated). Of these three, aliphatic and aromatic groups are preferred. Preferred aliphatic groups comprise 1 to 17 carbon atoms, more preferably 2 to 9 carbon atoms. Preferred aromatic groups include benzene and benzene substituted with aliphatic groups comprising 1 to 4 carbon atoms. R₃ is a divalent organic radical that completes a cyclic structure with the anhydride group. The term "divalent organic radical" means an organic moiety wherein the available valencies are on carbon atoms. The cyclic structure may comprise, for example, a 5 or 6 member ring. R₃ may be substituted with aliphatic, cycloaliphatic or ar matic groups, preferably aliphatic groups comprising 1 to 12, more preferably 1 to 4, carbon atoms. R₃ may also contain a heteroatom such as oxygen or nitrogen. R₃ may also be part of a fused ring structure. The fused ring structure may be cycloaliphatic or aromatic. The term "aromatic" in reference to a fused ring structure means that at least one carbonyl group is attached to an aromatic group. The term "cycloaliphatic" is intended to include all other non-aromatic fused ring structures. The fused ring may further be substituted with aliphatic groups, preferably those groups having 1 to 4 carbon atoms, most preferably 1 carbon atom. 10 15 20 5 Examples of useful anhydrides include propionic anhydride, methacrylic anhydride, crotonic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, trimethylacetic anhydride, hexanoic anhydride, heptanoic anhydride, decanoic anhydride, lauric anhydride, stearic anhydride, oleic anhydride, benzoic anhydride, succinic anhydride, methylsuccinic anhydride, isobutenylsuccinic anhydride, 2,2-dimethylsuccinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, 2-octen-1-ylsuccinic anhydride, 2-dodecen-1-ylsuccinic anhydride, glutaric anhydride, 3-methylglutaric anhydride 3,3-dimethylglutaric anhydride, 3-ethyl-3-methylglutaric anhydride, 2-phenylglutaric anhydride, diglycolic anhydride, ethylenediaminetetraacetic dianhydride, and poly(styrene-co-maleic anhydride), cyclohexanedicarboxylic anhydride, cis-1,2,3,6tetrahydrophthalic anhydride, hexahydro-4-methylphthalic anhydride, cis-5norbornene-endo-2,3-dicarboxylic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, 3,3tetramethyleneglutaric anhydride, phthalic anhydride, 4-methylphthalic anhydride, 1,8-naphthalic anhydride, diphenic anhydride, and homophthalic anhydride. These materials are commercially available from a variety of sources. 25 Further examples of useful anhydrides include the partial adducts of active hydrogen compounds (such as hydroxyl, amine and thiol compounds) with polyanhydrides (i.e., compounds having at least two anhydride groups such as ethylenediaminetetraacetic dianhydride and poly(styrene-co-maleic anhydride)). 5 15 25 The term "partial adduct" means that the resulting adduct retains at least one anhydride group after reaction with the active hydrogen containing compound. Examples of hydroxyl compounds useful for preparing the partial adducts include aliphatic alcohols such as methanol, ethanol, propanol, and butanol; higher alkane alcohols such as hexanol and octanol; ether alcohols such as 2-methoxyethanol, 2-(2-propoxy)ethanol, 2-butoxyethanol, and 2-ethoxyethanol; and alicyclic alcohols such as cyclohexylmethanol. Other hydroxyl compounds which may be used include those having the following structure: $$R_4$$ O $CH_2 = C - C - X - R_5 - OH$ wherein R₄ is hydrogen, methyl, ethyl or chlorine; R₅ is an alkyl group preferably having 2 to 16 carbon atoms; and X is oxygen or NR₆ wherein R₆ is hydrogen or an alkyl group preferably having 1 to 4 carbon atoms. More preferably, R₄ is hydrogen or methyl, R₅ is an alkyl group having 2 to 4 carbon atoms, and X is oxygen. Still other active hydrogen containing compounds useful for preparing the partial adducts of the invention include the adducts of the above-mentioned hydroxylated (meth)acrylates with lactones. The adducts, hydroxyacrylate polyesters, may be represented by the following structure: $$CH_2 = C - C - X - R_5 - (O - C - R_7) - OH$$ wherein R₄, R₅ and X are defined above, R₇ is an alkyl group preferably having 2 to 11 carbon atoms, and m is an integer greater than or equal to 1. More preferably, R₄ is hydrogen or methyl, R₅ is an alkyl group having 2 to 4 carbon atoms, X is oxygen, R₇ is an alkyl group having 3 to 5 carbon atoms, and m is an integer from 1 to 4. Examples of amine compounds useful for preparing the partial adducts include aliphatic primary amines such as ethylamine, butylamine, hexylamine, and allylamine; aliphatic secondary amines such as diethylamine, dihexylamine, and N-methylbutylamine; aromatic primary amines such as aniline, the ortho-, meta- or
para-toluidines, and xylylamines; and aromatic secondary amines such as n-alkyl anilines and toluidines. Examples of thiols include butanethiol; dodecyl mercaptan; esters of 3-mercaptopropionic acid such as isooctyl 3-mercaptopropionate; and esters of thioglycolic acid such as 2-ethylhexyl thioglycolate. 5 10 15 20 25 30 The partial adducts are typically prepared by first dissolving the polyanhydride in a solvent that is non-reactive with the polyanhydride and that provides a pourable medium for the subsequent dissolution of co-reactants. Examples of suitable solvents include butyl acetate, toluene, xylene, tetrahydrofuran, ethylene glycol dimethyl ether and the like. Preferably, the solvent is free radically polymerizable with acrylic monomer so that once the partial adduct is made, the solution of partial adduct in solvent can be used to prepare adhesives without the need for solvent removal. Examples of solvents which are free radically polymerizable with acrylic monomer include the esters of acrylic or methacrylic acid such as butyl methacrylate, ethoxyethyl methacrylate, benzyl methacrylate, and tetrahydrofurfuryl methacrylate. After the polyanhydride is dissolved in a solvent, a free radical inhibitor (for example, a phenolic compound such as hydroquinone monomethylether or butylated hydroxytoluene) is typically added at a level of 300-600 parts by weight per million parts by weight partial adduct. After the addition of the free radical inhibitor, the active hydrogen containing compound is added. A molar excess of the anhydride groups is necessary to achieve anhydride functionality in the resulting partial adduct. Once the active hydrogen containing compound is added, the mixture is then typically heated for a length of time (for example, 80°C to 110°C for several hours). When the reaction is complete, the mixture is cooled. If a free radically polymerizable solvent was used to carry out the reaction, the solution (with solvent) may be used to prepare adhesive compositions. Otherwise, the solvent is typically removed using various evaporation methods known in the art. Preferably, the decomplexer comprises at least one free radically polymerizable group that is capable of forming a covalent bond with acrylic mon mer(s). In this case, the decomplexer-amine reaction product is capable of forming a covalent b nd with acrylic monomer(s) and can be incorporated into the polymerized adhesive per se. This results in a reduced level of mobile constituents (i.e., those materials capable of migrating or diffusing through the cured adhesive). 5 Examples of polymerizable groups that may be present in the decomplexer of the invention include monosubstituted alkene groups, 1,1-disubstituted alkene groups, and 1,2-disubstituted alkene groups which are part of an α,β -unsaturated carbonyl structure. Examples of anhydrides that comprise such groups include itaconic anhydride, maleic anhydride, isobutenyl succinic anhydride, and methacrylic anhydride. 10 Even more preferably, the decomplexer reacts with the amine portion of the organoborane amine complex to form a decomplexer-amine reaction product comprising more than one free radically polymerizable group. In this case, the decomplexer not only provides a reduced level of mobile constituents, but also provides polymerized adhesive compositions having good solvent resistance. For example, the reaction of itaconic anhydride, maleic anhydride, isobutenyl succinic anhydride, or methacrylic anhydride with an organoborane amine complex comprising more than one amine group provides a decomplexer-amine reaction product comprising more than one free radically polymerizable group. Organoborane Amine Complex 20 15 In general, complexes of the invention are complexes of organoborane and amine. Such complexes may be represented by the structure: $$\begin{pmatrix} R_8 \\ R_9 \longrightarrow B \\ R_{10} \end{pmatrix} * Am$$ 25 R_8 is an alkyl group having 1 to 10 carbon atoms. R_9 and R_{10} are independently selected from alkyl groups having 1 to 10 carbon atoms and phenyl-containing groups. Preferably, R_8 , R_9 and R_{10} are independently selected alkyl groups having 1 to 5 carbon atoms. Most preferably, they are the same. The value of v is selected so as to provide an effective ratio of primary or secondary amine nitrogen atoms to boron at ms in the complex. The ratio of primary or secondary amine nitrogen atoms to boron atoms in the complex should broadly be about 0.5:1 to 4:1. 5 The amine, Am, may comprise a variety of structures, for example, any primary or secondary amine, polyamine containing a primary or secondary amine, or ammonia. When solvent resistance in the ultimate polymerized acrylic composition is desired, Am preferably comprises a polyamine. For example, Am may represented by the structure: 10 where R_{11} and R_{12} are hydrogen, alkyl of 1 to 10 carbon atoms, hydroxyethyl or 15 where R₁₃ and R₁₄ are hydrogen or alkyl of 1 to 10 carbon atoms, m is greater than 2, and n is 1 to 6. The alkyl groups in these formulae may comprise straight or branched chains. Illustrative compounds include n-octylamine, 1,6-diaminohexane, diethylamine, dibutylamine, dipropylenediamine, diethylenetriamine, ammonia, 1,3-propylenediamine, and 1,2-propylenediamine. Alternatively, Am may be a polyoxyalkylenepolyamine having a structure such as 20 $$H_2NR_{15}O$$ — $(R_{16}O)_w$ — $(R_{17}O)_x$ — $(R_{16}O)_y$ — $R_{15}NH_2$ (I) or $[H_2NR_{15}O$ — $(R_{16}O)_w]_z$ — R_{18} (II). R_{15} , R_{16} and R_{17} are preferably alkylene groups having 1 to 10 carbon atoms which may be the same or different. More preferably, R_{15} is an alkyl group having 2 to 4 carbon atoms, R_{16} is an alkyl group of 2 or 3 carbon atoms, and R_{17} is an alkyl group of 2 or 3 carbon atoms. R₁₈ is a residue of a polyol used to prepare the polyoxyalkylenep lyamine (i.e., the organic structure that remains when the hydroxyl groups are removed). R₁₈ may be branched or linear, saturated or unsaturated, and substituted or unsubstituted. 5 10 The value of w is ≥ 1 (more preferably about 1 to 150, and most preferably about 1 to 20). The value of x and y are ≥ 0 . The value of z is ≥ 2 (more preferably 3 or 4). Examples of useful polyoxyalkylenepolyamines include polyethyleneoxidediamine, polypropyleneoxidediamine, diethyleneglycolpropylenediamine, triethyleneglycolpropylenediamine, polytetramethyleneoxidediamine, and polyethyleneoxide-co-polypropyleneoxidediamine. Examples of useful commercially available polyoxyalkylenepolyamines include various JEFFAMINES from Huntsman Chemical Company such as the D, ED, EDR, and T series diamines (e.g., D-400, D-2000, D-5000, ED-600, ED-900, ED-2001, EDR-148 and T403), as well as DCA-221 from Dixie Chemical Company. 20 15 Alternatively, the amine, Am, may comprise the reaction product of one or more diprimary amine-terminated materials (i.e., the two terminal groups are primary amine) and one or more materials containing at least two groups reactive with the primary amine (the latter may be referred to as a "difunctional primary amine-reactive" material). In this case, Am may be represented by the structure: $$E-(L-E)_q-L-E$$ (III) 25 in which each E group is the residue of the diprimary amine-terminated material and each L is a linking group that is the residue of the material having at least two groups reactive with primary amine. The term "residue" means those portions of the diprimary amine-terminated material and the diffunctional primary amine-reactive material that remain after reaction to form the polyamine adduct. The integral value of q is ≥ 0 (more preferably, it is from 0 to 5, and most preferably it is 0 or 1). Useful diprimary amine-terminated materials (E) include alkyl diprimary amines, aryl diprimary amines, alkaryl diprimary amines, polyoxyalkylenediamines such as those represented by structure I described above, and mixtures thereof. A particularly preferred material for E is an aliphatic oxyalkylene diamine sold as DCA-221 from Dixie Chemical Company. Suitable candidates for the material having at least two groups reactive with primary amine (L) may be represented by the general structure W-R-Z, wherein W and Z are moieties independently selected from the group consisting of carboxylic acid, carboxylic acid halide, ester, aldehyde, epoxide, amino alcohol, and acrylic, and R is a divalent organic radical. Most preferably W and Z are the same. A particularly preferred material for L is hexanedioldiacrylate. #### Initiator System 5 10 15 20 25 30 The initiator systems of the invention are especially useful in polymerizing acrylic monomers, particularly for making polymerizable acrylic adhesives. The organoborane amine complex is employed in an effective amount, which is an amount large enough to permit polymerization to readily occur to obtain a polymer (preferably, an acrylic polymer) of high enough molecular weight for the desired end use. If the amount of organoborane amine complex is too low, then the polymerization may be incomplete or, in the case of adhesives, the resulting composition may have poor adhesion. On the other hand, if the amount of organoborane amine complex is too high, then the polymerization may proceed too rapidly to allow for effective mixing and use of the resulting composition. Large amounts of complex could also lead to the generation of large volumes of borane, which, in the case of an adhesive, could weaken the bondline. The useful rate of polymerization will depend in part on the method of applying the composition to a substrate. Thus, a faster rate of polymerization may be accommodated by using a high speed automated industrial adhesive applicator rather than by applying the composition with a hand applicator or by manually mixing the composition. Within these parameters, an effective amount of the organoborane amine complex is an amount that preferably provides about 0.03
to 1.5 weight % boron, based on the total weight of the adhesive composition, more preferably about 0.06 to 0.60 weight % boron. The weight % of boron in a composition is equal to the following: (weight of complex in the composition) X in the complex) (Total weight of composition) The organoborane decomplexer liberates organoborane by reacting with the amine, thereby removing the organoborane from chemical attachment with the amine. The decomplexer is employed in an effective amount; that is, an amount effective to promote polymerization by liberating organoborane from the complex but without materially adversely affecting the properties of the ultimate polymerized composition. Larger amounts of decomplexer may permit the polymerization to proceed too quickly and, in the case of adhesives, the resulting materials may demonstrate inadequate adhesion to low energy surfaces. If small amounts of decomplexer are employed, the rate of polymerization may be too slow and the monomers that are being polymerized may not adequately increase in molecular weight. However, a reduced amount of decomplexer may be helpful in slowing the rate of polymerization if it is otherwise too fast. Within these parameters, the decomplexer is typically provided in an amount such that the ratio of anhydride groups to amine groups is in the range of 0.5:1.0 to 1.0:1.0. The number of amine groups includes both primary and secondary amine groups if the amine is a polyamine. #### Compositions 5 10 15 20 25 30 The initiator systems of the invention are useful in providing polymerizable acrylic monomer compositions. "Acrylic monomers" are polymerizable monomers having one or more acrylic or substituted acrylic moieties, chemical groups or functionality; that is, groups having the general structure $$\begin{array}{c|c} R_{19} O \\ \parallel & \parallel \\ H_2C - C - C - X - R_{20} \end{array}$$ wherein R_{19} and R_{20} are hydrogen or organic radicals, and X is oxygen or NR_{21} where R_{21} is hydrogen or an alkyl group preferably having 1 t 4 carbon atoms. Where R_{19} and R_{20} are organic radicals, they may be the same or they may be different. Blends of acrylic monomers may also be used. The polymerizable acrylic monomer may be monofunctional, polyfunctional or a combination thereof. 5 10 15 20 25 30 The most useful monomers are monofunctional acrylate and methacrylate esters or amides and substituted derivatives thereof such as cyano, chloro, and silane derivatives as well as blends of substituted and unsubstituted monofunctional acrylate and methacrylate esters and amides. Particularly preferred monomers include lower molecular weight methacrylate esters and amides such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, methoxy ethyl methacrylate, cyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, N,N-dimethyl methacrylamide and blends thereof. Acrylate esters and amides and higher molecular weight methacrylate esters and amides are less preferred for use alone, but can be especially usefully employed as modifying monomers with predominating amounts of lower molecular weight methacrylate esters and amides so as to, for example, enhance the softness or flexibility of the ultimate composition. Examples of such acrylate esters and amides and higher molecular weight methacrylate esters and amides include methyl acrylate, ethyl acrylate, isobornyl methacrylate, butyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, decylmethacrylate, dodecyl methacrylate, tert-butyl methacrylate, acrylamide, N-methyl acrylamide, diacetone acrylamide, N-tert-butyl acrylamide, N-tert-octyl acrylamide, N-decyl methacrylamide, gamma-methacryloxypropyl trimethoxysilane, 2-cyanoethyl acrylate, 3-cyanopropyl acrylate, tetrahydrofurfuryl chloroacrylate, glycidyl acrylate, glycidyl methacrylate, and the like. Dimethylaminoethyl acrylate and dimethylaminoethyl methacrylate may also be used as modifying agents although additional organoborane liberator may be required due to the extra amine groups. Particularly preferred are blends of any of the lower molecular weight alkyl methacrylate esters described above with alkyl acrylates having 4 to 10 carbon WO 97/17383 atoms in the alkyl group, such as blends of methyl methacrylate and butylacrylate. Polymerizable compositi ns of this type may broadly comprise, based on the total weight of the composition, about 2 to 50 wt. % of the alkyl acrylate and, correspondingly, about 50 to 98 wt. % of the alkyl methacrylate. 5 Other useful monomers that can be used include di- or higher functional (meth)acrylates (for example, hexanedioldiacrylate, ethylene glycol dimethacrylate, ethylene glycol diacrylate, triethylene glycol dimethacrylate, polyethylene glycol diacrylate, tetraethylene glycol di(meth)acrylate, glycerol diacrylate, diethylene glycol dimethacrylate, pentaerythritol triacrylate, trimethylolpropane trimethacrylate, as well as other polyether diacrylates and dimethacrylates). 10 The above-discussion of acrylic monomers is not intended to be exhaustive. Other acrylic monomers are known in the art and may be used in the present invention. 15 The compositions may further comprise a variety of optional additives. One particularly useful additive is a thickener such as medium (about 40,000) molecular weight polybutyl methacrylate which may be incorporated in an amount of about 10 to 40 weight %, based on the total weight of the composition. Thickeners may be employed to increase the viscosity of the composition to a more easily applied viscous syrup-like consistency. 20 Another particularly useful additive is an elastomeric material. These materials can improve the fracture toughness of compositions made therewith which can be beneficial when, for example, bonding stiff, high yield strength materials such as metal substrates that do not mechanically absorb energy as easily as other materials, such as flexible polymeric substrates. Such additives can be incorporated in an amount of about 5% to 35% by weight, based on the total weight of the composition. 25 Useful elastomeric modifiers include chlorinated or chlorosulphonated polyethylenes such as HYPALON 30 (commercially available from E. I. duPont de Nemours and Co., Wilmington DE). Also useful, and even more preferred, are certain graft copolymer resins such as particles that comprise rubber or rubber-like cores or networks that are surrounded by relatively hard shells, these materials often being referred to as "core-shell" polymers. Most preferred are the acrylonitrilebutadiene-styrene graft copolymers. In addition to improving the fracture toughness of the composition, coreshell polymers can also impart enhanced spreading and flow properties to the uncured composition. These enhanced properties may be manifested by a reduced tendency for the composition to leave an undesirable "string" upon dispensing from a syringe-type applicator, or sag or slump after having been applied to a vertical surface. Use of more than about 20% of a core-shell polymer additive is desirable for achieving improved sag-slump resistance. 10 5 Peroxides may be optionally included (typically in an amount of about 2 % by weight or less, based on the total weight of the composition), for example, to adjust the speed at which the compositions polymerize or to complete the polymerization. 15 Small amounts of inhibitors such as hydroquinone monomethylether may be used, for example, to prevent or reduce degradation of the acrylic monomers during storage. Inhibitors may be added in an amount that does not materially reduce the rate of polymerization or the ultimate properties of an adhesive or other composition made therewith, typically about 100 - 10,000 ppm based on the weight of the polymerizable monomers. 20 Other possible additives include non-reactive colorants, fillers (e.g., carbon black), etc. provided they are dried sufficiently to reduce moisture content below about 0.1 % by weight based on the total weight of the additives. 25 The various optional additives are employed in an amount that does not significantly adversely affect the polymerization process or the desired properties of compositions made therewith. 30 Polymerizable acrylic compositions according to the invention may be used in a wide variety of ways, including as sealants, coatings, and injection molding resins. They may also be used as matrix resins in conjunction with glass and metal fiber mats such as in resin transfer molding operations. They may further be used as encapsulants and potting compounds such as in the manufacture of lectrical components, printed circuit boards and the like. Quite desirably, they provide polymerizable acrylic adhesive compositions that can bond a diverse myriad of substrates, including polymers, wood, ceramics, concrete, and primed metals. The polymerizable compositions of the invention can be easily used as two-part adhesives. The components of the polymerizable composition are blended as would normally be done when working with such materials. The decomplexer of the polymerization initiator system is usually included in this blend so as to separate it from the organoborane amine complex, thus providing one part of the two-part composition. The organoborane amine complex of the polymerization initiator system provides the second part of the composition and is added to the first part shortly before it is desired to use the composition. The complex may be added to the first part directly or it may be predissolved in an appropriate carrier such as a small amount of methyl methacrylate. For a two-part adhesive such as those of the invention to be most easily used in commercial and industrial environments, the ratio at which the two parts are combined should be a convenient whole number. This facilitates application of the adhesive with conventional, commercially available dispensers. Such dispensers are shown in U.S. Patent Nos. 4,538,920 and
5,082,147 and are available from Conprotec, Inc. (Salem NH) under the tradename "Mixpac." Once the two parts have been combined, the composition should be used quickly, as the useful pot life may be short depending upon the acrylic monomer mix, the amount of complex, and the temperature at which the bonding is to be performed. The polymerizable composition is applied to one or both substrates and then the substrates are joined together with pressure to force excess composition out of the bond line. This also has the advantage of displacing composition that has been exposed to air and that may have advanced too far in cure. In general, the bonds should be made shortly after the composition has been applied, preferably within about 10 minutes. The typical bond line thickness is about 0.1 to 0.3 mm but may exceed 1.0 mm when gap filling is needed. The bonding process can easily be carried out at room temperature and to improve the degree of polymerization it is 5 10 15 20 desirable to keep the temperature below about 40°C, preferably below 30°C, and most preferably below about 25°C. The bonds will cure to a reasonable green strength to permit handling of the bonded components within about 1 hour. Full strength will be reached in about 24 hours under ambient conditions; post-curing with heat (typically about 80°C) may be used if desired. The invention will be more fully appreciated with reference to the following nonlimiting examples in which (unless noted otherwise) all weights are given as weight percents (weight %), based on the total weight of the composition which is 100 weight %. #### **EXAMPLES** #### **Bond Strength Test Method** 5 10 15 20 25 30 The adhesive compositions described below were tested for bond strength. The base component of a given adhesive formulation (comprising a thorough mixture of thickened monomers and decomplexer) was combined with the organoborane polyamine complex (referred to as the accelerator component) and mixed with a spatula for one minute. The adhesive was then applied to a 2 inch (5.1 cm) wide, 6 inch long (15.2 cm), 8 mil (0.2 mm) thick film. The film was held flat using two 30 mil (0.8 mm) thick aluminum overlays, the overlays overlapping 0.5 inch (1.3 cm) along the entire length of each side of the film. Each adhesive formulation was tested on two different film substrates, skived polytetrafluoroethylene (PTFE) and skived ultrahigh molecular weight polyethylene (PE). Neither of the films had any surface treatment. Once the adhesive was applied to the first film, a second film comprising the same substrate was eased onto the adhesive using a 2.7 lb (1.2 kg) weighted glass plate. One side of the glass plate was applied to one side of the second film at an angle of about 30 degrees and then gradually lowered to a horizontal position so that the second film was applied incrementally to the first to avoid formation of bubbles in the adhesive. Sufficient adhesive was applied to the first film to provide minimum bond dimensions of 1 inch (2.5 cm) in width by 1.5 inch (3.8 cm) in length. The bonded adherends were allowed to cure for 24 hours at room temperature (21-25°C). The samples were then tested for bond strength in the T-peel mode using an Instron Tensile Tester set at a crosshead speed of 4 inches/min (10.2 cm/min). Two overlapping free ends of the sample were clamped into the jaws of the Instron tester, one free end in the upper jaw and one free end in the lower jaw. The jaws were then pulled apart until at least 1 inch (2.5 cm) of adhesive was exposed or until adherend failure was observed. The average force per width during the run after the adhesive was initially exposed was recorded as the Peel Strength in pounds/inch width (piw). 10 5 The tensile strengths of PTFE and PE films were found to be 11 pounds/inch width (20 N/cm width) and 25 pound/inch width (44 N/cm width), respectively. Preferably, the Peel Strength values approximate the tensile strength values, indicating substrate as opposed to adhesive failure. #### Solvent Resistance 15 20 Cured adhesive films were obtained by removing the thin films of cured adhesive from the adherends after the bond strength peel tests were completed. When possible, the thin film was peeled from the remaining adherend. When this was difficult, the thin film plus adherend were immersed together in tetrahydrofuran (THF) solvent, and the adhesive was later scraped off the adherend. The weight of each adhesive film was determined and is denoted as W1 below. Each adhesive was placed in a 4 ounce (118 cm³) glass jar. Sufficient THF was added to the glass jar so that the contents comprised less than 5 parts by weight cured adhesive film and more than 95 parts by weight THF. The jar was capped and placed on a roll mixer for at least 24 hours at room temperature (21-25°C). The fluid mixture was then poured into a medium mesh conical gauze/paper paint filter (available from Foremost Co. and having a weight denoted below as W2) and thoroughly rinsed with THF. Filters were dried in an 80°C forced air oven for one hour. **25** . The filters were allowed to equilibrate overnight at room temperature before being weighed to give the value denoted below as W3. Adhesive percent solids were then calculated as follows: 5 10 15 20 25 Percent Solids = $$\frac{\text{W3-W2} + 0.0299}{\text{W1}}$$ X100 It is noted that a correction factor of 0.0299 milligrams was added to W3-W2 in the equation above to account for that portion of the filter that was lost by virtue of the process conditions. Percent Gel was then calculated for samples of the invention by dividing the Percent Solids (calculated as described above) by the weight percent of the adhesive which is capable of addition polymerization. For those formulations whose Percent Solids never exceed 10%, the portion capable of addition polymerization is only the acrylic monomers. All other formulations include the portion derived from the acrylic monomers, the amine part of the complex and the decomplexer. A sample calculation is provided below for Example 30 of the invention: Percent Gel_{Ex 30} = Percent Solids Ex 30 X 100 (Wt.%_{MMA} + Wt.%_{BMA} + Wt.%_{MA} = Wt%_{DC} + Wt %_{AmC} where Wt.%_{MMA} is the weight percent of methyl methacrylate, Wt.%_{BMA} is the weight percent of butyl methacrylate, Wt.%_{MA} is the weight percent of methyl acrylate, Wt.%_{DC} is the weight percent of decomplexer, and Wt.%_{AmC} is the weight percent of the amine portion of the decomplexer used in Example 30. The Percent Solids of Example 30 can be found in Table VI to be 64.4. Example 30 comprised Initiator In-1 given in Table IV. The organoborane portion (triethylborane) has a molecular weight of 98, while the amine portion (1,6-hexanediamine) has a molecular weight of 116. Table VI indicates that the weight percent of initiator was 2.791. Thus the value of the Wt.%_{AmC} can be calculated as follows: $$Wt.\%_{AmC} = (2.791) (116) (312)$$ $$Wt.\%_{AmC} = 1.038$$ The percent Gel_{Ex 30} can now be calculated from the other weight percents listed in Table VI as follows: 5 Percent Gel_{Ex30} = $$\frac{64.4 \times 100}{15.223 + 23.786 + 23.786 + 2.067 + 0.796}$$ Percent Gel_{Ex30} = 97.7% 10 15 Small deviations from table values are due to rounding of Percent Solids values. ## **Decomplexers** # Anhydride Decomplexers Anhydride decomplexers of the present invention include those commercially available compounds as listed as decomplexers A-M in Table I: TABLE I: Anhydride Decomplexers | Decomplexer | Name | Source | |-------------|--|-----------------------| | A | Maleic Anhydride | Aldrich Chemical Co. | | В | Itaconic Anhydride | Aldrich Chemical Co. | | C | Phthalic Anhydride | Aldrich Chemical Co. | | D | cis-1,2,3,6-Tetrahydrophthalic Anhydride | Aldrich Chemical Co. | | E | cis-1,2-Cyclohexanedicarboxylic Anhydride | Aldrich Chemical Co. | | F | Isobutenylsuccinic Anhydride (K-4) | Zeeland Chemicals | | G | Methacrylic Anhydride | Aldrich Chemical Co. | | H | Isobutyric Anhydride | Aldrich Chemical Co. | | I | Methyl Hexahydrophthalic Anhydride (MHHPA) | Milliken Chemical Co. | | J | Methyl-5-norbornene-2,3-dicarboxylic Anhydride | Aldrich Chemical Co. | | K | 2-Octen-1-ylsuccinic Anhydride | Aldrich Chemical Co. | | L | Milldride 5060 Anhydride | Milliken Chemical Co. | | M | SMA-3000A Anhydride | Atochem Inc. | #### Preparation of Anhydride Partial Adducts Partial adducts of poly(styrene-co-maleic anhydride) were prepared for use as decomplexers. A 50 ml glass vial was charged with 2,6-di-t-butyl-4-methylphenol (BHT) inhibitor according to the weight ratios specified in Table II. This charge was followed with charges of dried hydroxyethyl acrylate (HEA); butyl methacrylate (BMA) solvent; and poly(styrene-co-maleic anhydride) (SMA-3000A, available from Atochem Inc.), according to the weight ratios specified in Table II. The HEA had been dried over a bed of 4Å molecular sieves prior to charging. The glass vial was sealed, shaken to mix the contents, and placed in a 105°C circulating hot air oven. After reaching a temperature of 105°C, the contents were thoroughly remixed by shaking and returned to the oven. The glass vial remained in the oven for a 10-12 hour heating cycle, during which the glass vial was shaken periodically. The anhydride adduct decomplexers included in the present invention are designated as decomplexers N-Q in Table II. 15 10 5 TABLE II: Anhydride Adduct Decomplexers | Decomplexer | Wt.% BHT | Wt.% HEA | Wt.% BMA | Wt.% SMA | |-------------|----------|---------------|----------|----------| | N | 0.03 | 3.00 | 49.98 | 46.99 | | 0 | 0.03 | 4.89 | 49.98 | 45.10 | | P | 0.03 | 5.65 | 49.99 | 44.33 | | Q | 0.03 | 8.03 . | 49.98 | 41.96 | #### Comparative Decomplexer For comparative purposes, methacrylic acid (available from Aldrich Chemical Co.) was used as a decomplexer in the following examples and has been designated as decomplexer R in Table
III. TABLE III: Comparative Decomplexer | Decomplexer | . Name | Source | |-------------|------------------|----------------------| | R | Methacrylic Acid | Aldrich Chemical Co. | 25 WO 97/17383 #### Initiat rs 5 10 15 20 25 The organoborane amine complex initiators used in the present invention are listed in Table IV below. All were prepared with triethyl borane using a 1:1 boron to nitrogen ratio with the exception of the E-L-E type which used a boron to nitrogen ratio of 0.9:1. The organoborane polyamine complexes may be readily prepared using known techniques. Typically, the polyamine is combined with the organoborane in an inert atmosphere with slow stirring. An exotherm is often observed and cooling of the mixture is therefore recommended. If the ingredients have a high vapor pressure, it is desirable to keep the reaction temperature below about 70° to 80°C. Once the materials have been well mixed the complex is permitted to cool to room temperature. No special storage conditions are required although it is preferred that the complex be kept in a capped vessel in a cool, dark location. Advantageously, the complexes can be prepared in the absence of organic solvents that would later have to be removed, although they could be prepared in solvent if so desired. Solvents used in the preparation of the complexes should, preferably be ones that do not coordinate amines, for example, tetrahydofuran or hexane. TABLE IV: Organoborane Amine Complex Initiators | | Organoborane | Amine | |------|----------------|---| | In-1 | Triethylborane | 1,6-Hexanediamine | | In-2 | Triethylborane | Jeffamine ED-600 diamine ⁽¹⁾ | | In-3 | Triethylborane | Jeffamine T-403 triamine ⁽¹⁾ | | In-4 | Triethylborane | E-L-E diamine I ^(2a) | | In-5 | Triethylborane | E-L-E diamine II ^(2b) | (1) Available from Huntsman Corp. (2) 2:1 Molar adduct of Dide Chemical Co. DCA-221 diamine and: . a = 1,6-hexanediol discrytate b = Shell Chemical Co. Epon 828 # Adhesive Compositions (Examples 1-38 and Comparative Examples 39-41) Two part adhesive compositions were prepared according to Table V below. The weight percent of each component based upon total composition weight is shown in this table. The two part adhesives of this invention comprise an accelerator component and a base component. The accelerator component in all examples was solely the organoborane amine complex initiator. The base component comprised a thickened acrylic monomer mixture to which has been added an effective amount of decomplexer. The thickened monomer mixture comprises a 16:25:25:34 blend by weight of methyl methacrylate (MMA), butyl acrylate (BA), methyl acrylate (MA) and poly(butyl methacrylate) (PBMA), respectively. The thickened monomer mixture components are all available from Aldrich Chemical Co. 10 5 Unless otherwise indicated, the standard formulation provided 3.0 moles of triethylborane for every 100 moles of free-radically polymerizable (meth)acrylate ester vinyl groups and an index of 0.75 moles of amine reactive anhydride groups for each mole of initiator amine groups. | % Dolame index | 3.0 | 3.0 | 6.
0. | 3.0 | 0 | | 1 | | | | 1 | 0.55 | 0.75 | 07,5 | 200 | 0.75 | 0 | 0.75 | 0.55 | 0.75 | = | 0.75 | 0.75 | 0.75 | 0.55 | 0.75 | 8 | 0 | 0.75 | |----------------|--------|-----------------------------------|---|--|---|---|---|--|--|--|---|--|--
--|--|---
--
--
--|--|--|---|--|--
--|--|---|---|--
--|--| | | | | | | 3. | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | 2.0 | 3.0 | 3.0 | 10.0 | 30 | 2.0 | 3.0 | 3.0 | 3.0 | 1.5 | 3.0 | 0. | 1.5 | 1.5 | 13 | 2.0 | 2.5 | | Wt. % | 2.793 | 2.792 | 2.791 | 2.789 | 2.803 | 2.767 | 1.887 | 2.782 | 2.770 | 2.795 | 2.778 | 1.869 | 1.852 | 2.707 | 2.4% | 7.638 | 2.812 | 1.898 | 2.818 | 2.807 | 2.793 | 1.430 | 2.791 | 0.962 | 1.434 | 1.430 | 1.425 | 1.892 | 2.345 | | | In-1 | In-1 | In-1 | In-1 | [h-1 | In-1 | II | In-1 | In-I | I-i | ij | I-ii | Ē | In-I | 1-41 | Ē | Ē | Ē | l-il | In-1 | I-uI | I-II | In-1 | ln-1 | In-1 | In-1 | Ē | In-i | In-I | | N.% | 1.988 | 2.040 | 2.067 | 2.119 | 1.621 | 2.909 | 1.615 | 2.381 | 2.796 | 1.922 | 2.546 | 2.550 | 3.446 | 5.035 | 12.393 | 14.214 | 1.325 | 1.022 | 1.113 | 1.511 | 2.005 | 1.059 | 2.067 | 0.712 | 0.779 | 1.059 | 1.407 | 1.400 | 1.736 | | 2 | ပ | D | 丑 | н | I | I | J | J | × | L | Г | M | M | M | M | M | A | В | В | В | В | Ŧ | Ŀ, | IJ | ט | G | ß | S | G | | | 32.374 | 32.357 | 32.347 | 32.331 | 32.4% | 32.070 | 32.808 | 32.245 | 32.107 | 32.3% | 32.190 | 32.498 | 32.200 | 31.367 | 28.937 | 26.570 | 32.593 | 33.007 | 32.664 | 32.533 | 32.370 | 33.154 | 32.347 | 33.430 | 33.247 | 33.154 | 33.037 | 32.881 | 32.612 | | | 23.805 | 23.792 | 23.786 | 23.773 | 23.894 | 23.581 | 24.125 | 23.709 | 23.609 | 23.821 | 23.669 | 23.895 | 23.675 | 23.065 | 21.278 | 19.537 | 23.966 | 24.270 | 24.017 | 23.920 | 23.800 | 24.378 | 23.786 | 24.582 | 24.447 | 24.378 | 24.292 | 24.177 | 23.980 | | | 23.805 | 23.792 | 23.786 | 23.773 | 23.894 | 23.581 | 24.125 | 23.709 | 23.609 | 23.821 | 23.669 | 23.895 | 23.675 | 23.065 | 21.278 | 19.537 | 23.966 | 24.270 | 24.017 | 23.920 | 23.800 | 24.378 | 23.786 | 24.582 | 24.447 | 24.378 | 24.292 | 24.177 | 23.980 | | | 15.235 | 15.227 | 15.223 | 15.215 | 15.292 | 15.092 | 15.440 | 15.174 | 15.109 | 15.245 | 15.148 | 15.293 | 15.152 | 14.761 | 13.618 | 12.504 | 15.338 | 15.533 | 15.371 | 15.309 | 15.232 | 15.601 | 15.223 | 15.732 | 15.646 | 15.601 | 15.547 | 15.473 | 15.347 | | • | - | 2 | 3 | 4 | \$ | 9 | 7 | 00 | 6 | 01 | | 12 | 13 | 14 | 15 | 16 | 17 | 80 | 61 | 02 | 21 | 77 | 23 | 24 | 25 | 97 | 27 | 28 | 29 | | | Wt % | 15.235 23.805 23.374 C 1.988 In-1 | 23.805 23.805 32.374 C 1.988 In-1 23.792 23.792 32.357 D 2.040 In-1 | 15.235 23.805 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 | 15.235 23.805 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 | 15.235 23.805 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.222 23.894 32.496 I 1.621 In-1 | 15.235 23.805 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773 23.773 32.347 E 2.067 In-1 15.215 23.773 23.773 32.349 In-1 1.621 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.581 12.070 I 2.909 In-1 | 15.235 23.805 23.805 32.374 C Wt % 15.227 23.792 23.737 C 1.988 In-1 15.227 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.581 32.808 J 1.615 In-1 | 15.235 23.805 23.805 32.374 C 1988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.040 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.581 32.070 I 2.909 In-1 15.440 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.245 J 23.381 In-1 | 15.235 23.805 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.581 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 1.615 In-1 15.109 23.609 23.609 32.107 K 2.381 In-1 15.109 23.609 23.609 32.107 K 2.796 In-1 | 15.235 23.805 23.374 C Wt % 15.227 23.792 23.737 D 2.040 In-1 15.223 23.786 23.786 32.357 D 2.040 In-1 15.223 23.786 23.773 32.331 H 2.067 In-1 15.242 23.773 23.773 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.040 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.109 23.609 23.609 32.107 K 2.796 In-1 15.109 23.821 23.245 J 23.81 In-1 15.245 23.821 23.821 13.396 L 1.922 In-1 | 15.235 23.805 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.040 In-1 15.223 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.581 32.070 I 2.909 In-1 15.40 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.609 32.107 K 2.381 In-1 15.245 23.669 23.669 32.190 L 1.922 In-1 15.148 23.669 23.669 1 2.366 In-1 2.366 In-1 | 15.235 23.805 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.047 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.581 32.070 I 2.909 In-1 15.092 23.581 23.581 32.245 J 2.399 In-1 15.174 24.125 24.125 32.245 J 23.81 In-1 15.109 23.609 23.609 32.107 K 2.796 In-1 15.245 23.869 23.699 H 1.922 In-1 15.293 23.895 32.498 M 2.550 In-1 | 15.235 23.805 23.374 C 1.988 In-1 15.227 23.786 23.786 32.347 E 2.040 In-1 15.223 23.786 23.786 32.347 E 2.040 In-1 15.223 23.773 23.773 23.347 E 2.047 In-1 15.292 23.789 23.731 H 2.119 In-1 15.092 23.581 23.581 32.346 I 1.621 In-1 15.174 24.125 24.125 32.808 J 1.615 In-1 15.109 23.609 23.709 32.107 K 2.796 In-1 15.148 23.669 23.669 32.107 K 2.366 In-1 15.245 23.669 23.669 32.199 L 1.922 In-1 15.248 23.669 23.669 32.199 L 2.366 In-1 15.253 23.573 M 23.546 In-1 | 15.235 23.805 23.805 32.374 C 1988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773
23.731 H 2.119 In-1 15.229 23.894 23.734 E 2.067 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.440 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.148 23.609 23.609 32.190 K 2.796 In-1 15.245 23.821 23.669 23.669 1.922 In-1 15.253 23.679 L 1.922 In-1 15.245 23.649 M 2.546 In-1 15.245 23.679 | 15.235 23.805 23.374 C 1988 In-1 15.227 23.792 23.792 32.374 C 1.988 In-1 15.227 23.786 23.786 32.347 E 2.040 In-1 15.215 23.773 23.773 23.331 H 2.119 In-1 15.222 23.894 23.894 32.349 1 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.809 J 1.621 In-1 15.174 23.709 23.709 32.245 J 1.615 In-1 15.148 23.609 23.609 32.107 K 2.366 In-1 15.245 23.855 23.669 23.669 L 1.922 In-1 15.245 23.655 23.669 32.198 M 2.546 In-1 15.152 23.655 23.656 32.200 M | 15.235 23.805 23.374 C 1.988 In-1 15.227 23.792 23.792 32.377 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.224 23.773 23.773 32.347 E 2.067 In-1 15.225 23.894 23.734 E 2.067 In-1 15.092 23.894 23.349 1 2.119 In-1 15.440 24.125 23.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.148 23.609 23.609 32.107 K 2.346 In-1 15.148 23.669 23.699 J 1.922 In-1 15.152 23.675 M 2.349 In-1 1.923 In-1 <t< td=""><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.773 23.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.202 23.884 23.894 32.496 I 1.621 In-1 15.440 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.174 23.609 23.609 32.107 K 2.796 In-1 15.245 23.895 32.396 L 1.922 In-1 15.152 23.675 23.675 31.367 M 2.550 In-1 15.154 23.065 23.669 32.100 M 3.446 In-1 15.154 23.065 23.669 32.200 M 3.446 In-1 15.154 23.065 23.669 32.200 M 3.446 In-1 15.348 21.278 21.278 28.937 M 12.393 In-1 15.354 19.537 26.570 M 14.214 In-1 15.338 23.966 23.595 32.593 A 13.25 In-1 15.338 23.966 23.596 32.593 A 13.25 In-1 15.338 23.966 23.593 A 13.25 In-1 </td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.174 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.174 23.609 23.609 32.107 K 2.796 In-1 15.175 23.659 23.669 32.190 M 2.550 In-1 15.176 23.669 23.669 32.190 M 2.550 In-1 15.177 23.065 23.675 31.367 M 2.530 In-1 15.178 21.278 21.278 21.278 M 12.393 In-1 15.394 23.965 23.965 32.593 M 14.214 In-1 15.395 23.965 23.6570 M 14.214 In-1 15.395 24.270 24.270 33.007 B 1.022 In-1 15.338 24.270 24.270 33.007 B 1.022 In-1 </td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.737 D 2.040 In-1 15.223 23.786 23.737 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.81 32.070 I 2.909 In-1 15.092 23.581 23.81 32.070 I 2.909 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.148 23.669 23.609 32.107 K 2.796 In-1 15.148 23.669 23.669 32.190 L 2.546 In-1 15.149 23.675 23.675 32.498 M 2.550 In-1 15.140 23.065 23.669 32.190 M 3.446 In-1 15.151 23.675 23.675 M 41.214 In-1 15.338 23.966 23.966 32.593 M 44.214 In-1 15.338 23.966 23.966 32.593 A 1.325 In-1 15.331 24.270 24.270 32.664 B 1.022 In-1 15.331 24.270 24.270 32.664 B 1.012 In-1 15.331 24.270 24.270 32.664 B 1.012 In-1 15.331 24.270 24.270 32.664 B 1.012 In-1 15.331 24.270 24.270 24.270 E In-1 15.331 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 </td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.735 D 2.040 In-1 15.223 23.786 23.737 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.81 23.81 32.070 I 2.909 In-1 15.094 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.175 23.801 23.805 J 23.80 J 1.615 In-1 15.176 23.609 23.609 32.107 K 2.796 In-1 15.178 23.659 32.190 L 2.546 In-1 15.150 23.675 23.675 M 2.550 In-1 15.151 23.875 23.895 32.190 M 3.446 In-1 15.152 23.675 23.675 M 41.214 In-1 15.304 19.537 26.570 M 44.214 In-1 15.338 23.966 23.966 B 1.022 In-1 15.338 23.966 23.966 B 1.022 In-1 15.331 24.270 24.270 33.007 B 1.022 In-1 15.332 24.270 24.270 32.533 B 1.113 In-1 15.330 23.920 23.920 32.533 B 1.511 In-1 15.330 23.920 23.920 32.533 B 1.511 In-1 15.330 23.920 23.533 B 1.511 In-1 15.301 23.920 23.533 B 1.511 In-1 15.302 23.920 23.533 B 1.511 In-1 15.303 23.920 23.533 B 1.511 In-1 15.303 23.920 23.533 B 1.511 In-1 15.303 23.920 23.533 B 1.511 In-1 15.304 23.920 23.523 B 1.511 In-1 25.305 23.920 23.523 23.533 B 1.511 In-1 25.305 23.920 23.920 23.533 23.5</td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.222 23.894 23.894 32.496 I 1.621 In-1 15.440 24.125 24.125 32.806 J 1.615 In-1 15.440 24.125 23.81 32.808 J 1.615 In-1 15.440 24.125 23.609 32.107 K 2.796 In-1 15.441 23.709 23.609 32.107 K 2.796 In-1 15.442 23.669 23.669 J 1.016 In-1 15.443 23.669 23.669 J 1.016 In-1 15.444 23.669 23.669 J 1.016 In-1 15.454 23.669 23.669 J 1.016 In-1 15.454 23.665 23.665 J 1.016 In-1 15.534 23.665 23.665 J 1.016 In-1 15.534 23.665 23.665 J 1.016 In-1 15.535 24.270 24.270 J 1.016 In-1 15.537 24.270 23.533 B 1.113 In-1 15.336 23.920 23.837 B 1.511 In-1 15.337 23.336 23.337 B 1.511 In-1 15.337 23.330 23.337 B 2.005 In-1 </td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.733 H 2.119 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.216 23.894 23.894 32.496 I 1.621 In-1 15.309 23.894 23.896 J 1.615 In-1 15.109 23.609 23.609 J 1.005 In-1 15.148 23.609 23.609 J 1.005 In-1 15.151 23.675 23.875 J 1.005 In-1 15.152 23.675 23.675 J 1.005 In-1 15.153 24.270 24.270 J 20.005 In-1 15.309 23.906 23.906 J 20.005 In-1 15.318 21.278 21.278 J 20.005 In-1 15.320 23.906 23.906 J 20.005 In-1 15.331 24.270 24.270 J 20.005 In-1 15.332 24.270 24.270 J 20.005 In-1 15.333 24.270 24.270 32.644 In-1 15.330 23.920 23.920 32.331 In-1 15.321 24.378 24.378 33.346 In-1 15.322 23.800 23.900 32.370 In-1 15.322 23.800 23.800 32.316 In-1 15.322 24.378 24.378 J 24.378 In-1 15.325 In-1 15.326 24.378 33.154 In-1 15.327 24.378 33.154 In-1 15.328 In-1 15.329 24.378 24.378 In-1 15.320 24.378 33.154 In-1 15.321 24.378 24.378 J 24.378 In-1 15.322 15.323 24.378 24.378 J 24.378 In-1 25.32</td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.795 32.347 E 2.040 In-1 15.223 23.736 23.736 32.347 E 2.067 In-1 15.215 23.736 23.736 32.347 E 2.067 In-1 15.225 23.834 23.844 32.496 I 2.909 In-1 15.240 24.125 24.125 32.808 J 1.615 In-1 15.140 23.609 23.609 32.107 K 2.796 In-1 15.141 23.709 23.609 32.107 K 2.796 In-1 15.142 23.821 23.821 32.396 L 1.922 In-1 15.243 23.865 23.865 32.190 L 2.546 In-1 15.244 23.065 23.669 32.190 K 2.590 In-1 15.245 23.821 23.821 32.390 M 3.446 In-1 15.246 23.665 23.669 32.190 M 3.446 In-1 15.247 23.065 23.895 32.893 M 2.550 In-1 15.348 23.665 23.965 32.893 M 12.393 In-1 15.349 23.242 23.895 32.893 M 12.393 In-1 15.349 23.242 23.966 32.533 B 1.113 In-1 15.340 23.242 23.920 23.920 23.231 B 1.511 In-1 15.340 23.320 23.920 23.331 B 1.511 In-1 15.341 24.378 24.378 24.378 F 1059 In-1 15.243 23.786 23.347 F 2.067 In-1 15.244 23.786 23.347 F 2.067 In-1 15.345 15.245 23.786 23.347 F 2.067 In-1 15.245 23.786 23.347 F 2.067 In-1 15.245 23.786 23.347 F 2.067 In-1 15.245 23.348 23.347 In-1 15.245 23.348 23.347 In-1 15.245 23.348 23.348 In-1 15.245 23.348 23.348 In-1 15.245 23.348 23.348 In-1 15.245 23.348 23.348 In-1 15.245 23.348</td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.795 32.347 E 2.040 In-1 15.223 23.736 23.736 32.347 E 2.067 In-1 15.215 23.736 23.736 32.347 E 2.067 In-1 15.222 23.834 23.844 32.496 1 1.612 In-1 15.240 24.125 24.125 32.808 J 1.615 In-1 15.140 23.609 23.609 32.107 K 2.796 In-1 15.141 23.709 23.609 32.107 K 2.796 In-1 15.142 23.821 23.821 32.396 L 1.922 In-1 15.143 23.669 23.669 32.190 K 2.590 In-1 15.144 23.705 23.805 32.498 M 2.550 In-1 15.15 23.865 23.669 32.190 K 2.596 In-1 15.15 23.865 23.669 32.190 K 2.590 In-1 15.15 23.865 23.865 32.498 M 2.550 In-1 15.15 23.865 23.669 32.190 M 3.446 In-1 15.15 23.865 23.665 32.590 M 12.393 In-1 15.31 24.70 24.270 33.007 B 1.325 In-1 15.32 23.800 23.920 23.539 B 1.511 In-1 15.32 23.786 23.341 F 1.059 In-1 15.23 23.786 23.347 F 2.067 In-1 15.23 23.786 23.347 F 2.067 In-1 15.23 24.378 23.347 F 2.067 In-1 15.23 24.378 23.341 F 2.067 In-1 15.23 24.378 23.343 G 0.712 In-1 </td><td> 15.235 23.805 23.805 32.374 C 1.986 In-1 15.227 23.792 23.792 23.357 D 2.040 In-1 15.228 23.773 23.773 23.347 E 2.067 In-1 15.229 23.894 23.894 32.346 I 1.621 In-1 15.292 23.894 23.894 32.346 I 1.621 In-1 15.292 23.894 23.894 32.346 I 1.621 In-1 15.40 24.125 23.709 32.345 J 2.399 In-1 15.174 23.709 23.609 32.107 K 2.796 In-1 15.175 23.821 23.828 J 23.89 In-1 15.185 23.855 23.869 J 23.89 In-1 15.190 23.805 23.895 J 49.87 M 12.393 In-1 15.191 23.065 23.659 J 49.87 M 14.214 In-1 15.192 23.895 23.895 M 2.550 In-1 15.193 23.905 23.895 M 23.905 In-1 15.33 24.270 24.270 33.007 B 1.022 In-1 15.31
24.378 24.378 33.347 F 1.059 In-1 15.203 23.380 23.800 32.347 F 2.067 In-1 15.203 23.3786 23.880 32.347 F 2.067 In-1 15.204 24.378 24.378 33.347 F 2.067 In-1 15.205 24.447 24.447 33.247 G 0.712 In-1 15.404 24.447 24.447 33.247 G 0.779 33.244 G 0.779 In-1 15.405 24.447 24.447 24.447 24.447 24.447 24.447 24.447 24.447 24.441 24.444 24.444 24.444 24.444 24.444 </td><td> 15.225 22.805 23.805 32.374 C 1.986 In-1 15.227 23.792 23.792 32.377 D 2.040 In-1 15.227 23.773 23.773 23.347 E 2.040 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.895 J. 1070 I 2.909 In-1 15.109 23.779 23.709 J. 1070 I 2.909 In-1 15.109 23.709 23.709 J. 1070 I 2.909 In-1 15.109 23.609 23.609 J. 100 I 1.922 In-1 15.109 23.805 23.895 J. 100 I 2.906 In-1 15.109 23.805 23.805 J. 100 I 1.922 In-1 15.109 23.805 23.809 J. 100 I 1.922 In-1 15.109 23.805 23.809 J. 100 In-1 15.109 23.805 23.809 J. 100 In-1 15.109 23.805 23.805 J. 100 In-1 15.109 23.800 23.800 J. 100 In-1 15.201 24.270 24.270 J. 10.90 In-1 15.302 23.800 23.800 J. 10.90 In-1 15.303 24.270 24.270 J. 10.90 In-1 15.304 23.800 23.800 J. 10.90 In-1 15.305 23.805 23.805 J. 10.90 In-1 15.307 24.447 24.447 33.247 G 0.779 In-1 15.308 24.477 24.447 33.144 G I. 10.90 In-1 15.601 24.378 24.378 J. 10.60 J. 10.60 J. 10.60 In-1 15.601 24.378 J. 10.80 J. 10.80 In-1 15.6</td><td> 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.735 D 2.040 In-1 15.223 23.786 23.735 D 2.040 In-1 15.215 23.773 23.773 D 2.040 In-1 15.227 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.81 32.070 I 2.090 In-1 15.194 24.125 24.125 32.808 J 1.615 In-1 15.109 23.709 23.709 32.245 J 2.381 In-1 15.109 23.609 23.669 32.107 K 2.381 In-1 15.131 23.659 23.669 32.107 K 2.381 In-1 15.132 23.875 23.895 32.897 M 2.550 In-1 15.134 23.655 23.669 32.100 M 3.446 In-1 15.304 23.805 23.809 32.837 M 1.323 In-1 15.315 24.270 24.270 33.007 B 1.113 In-1 15.316 24.017 24.017 24.518 F 1.029 In-1 15.321 24.817 24.447 33.247 G 0.712 In-1 15.232 24.828 24.378 33.134 G 0.712 In-1 15.233 24.447 24.447 33.247 G 1.609 In-1 15.566 24.447 24.437 24.378 33.154 G 1.609 In-1 15.557 24.232 24.338 24.378 33.154 G 1.609 In-1 15.557 24.232 24.338 24.378 33.154 G 1.609 In-1 15.557 24.232 24.338 25.550 24.232 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24</td><td> 15.233 23.805 32.374 C 1.988 In-1 15.227 23.792 23.737 D 2.040 In-1 15.223 23.773 23.773 32.331 H 2.119 In-1 15.224 23.773 23.773 32.331 H 2.119 In-1 15.225 23.884 23.884 32.486 1 1.621 In-1 15.402 23.884 23.884 32.486 1 1.621 In-1 15.403 23.709 23.709 32.245 J 2.381 In-1 15.109 23.609 23.609 32.107 K 2.796 In-1 15.109 23.609 23.609 32.107 K 2.796 In-1 15.101 23.885 23.885 32.248 M 2.536 In-1 15.102 23.685 23.689 32.107 K 2.796 In-1 15.103 23.685 23.689 32.107 K 2.796 In-1 15.104 23.065 23.669 32.107 K 2.346 In-1 15.105 23.695 23.669 32.107 K 2.346 In-1 15.107 23.065 23.669 32.107 K 2.346 In-1 15.108 23.065 23.669 32.100 K 1.233 In-1 15.109 23.065 23.669 32.249 M 12.333 In-1 15.204 19.537 19.537 26.570 M 14.214 In-1 15.305 23.920 23.500 32.307 B 1.313 In-1 15.202 23.800 23.920 32.347 F 1.059 In-1 15.203 23.786 23.786 23.477 F 2.067 In-1 15.204 24.378 24.378 33.430 G 0.779 In-1 15.205 24.326 24.326 23.437 G 1.407 In-1 15.473 24.376 24.378 24.378 24.378 13.347 G 1.407 In-1 15.547 24.292 24.392 24.392 24.392 13.337 G 1.407 In-1 15.473 24.177 24.17</td></t<> | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.773 23.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.202 23.884 23.894 32.496 I 1.621 In-1 15.440 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.174 23.609 23.609 32.107 K 2.796 In-1 15.245 23.895 32.396 L 1.922 In-1 15.152 23.675 23.675 31.367 M 2.550 In-1 15.154 23.065 23.669 32.100 M 3.446 In-1 15.154 23.065 23.669 32.200 M 3.446 In-1 15.154 23.065 23.669 32.200 M 3.446 In-1 15.348 21.278 21.278 28.937 M 12.393 In-1 15.354 19.537 26.570 M 14.214 In-1 15.338 23.966 23.595 32.593 A 13.25 In-1 15.338 23.966 23.596 32.593 A 13.25 In-1 15.338 23.966 23.593 A 13.25 In-1 | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.174 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.174 23.609 23.609 32.107 K 2.796 In-1 15.175 23.659 23.669 32.190 M 2.550 In-1 15.176 23.669 23.669 32.190 M 2.550 In-1 15.177 23.065 23.675 31.367 M 2.530 In-1 15.178 21.278 21.278 21.278 M 12.393 In-1 15.394 23.965 23.965 32.593 M 14.214 In-1 15.395 23.965 23.6570 M 14.214 In-1 15.395 24.270 24.270 33.007 B 1.022 In-1 15.338 24.270 24.270 33.007 B 1.022 In-1 | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.737 D 2.040 In-1 15.223 23.786 23.737 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.81 32.070 I 2.909 In-1 15.092 23.581 23.81 32.070 I 2.909 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.148 23.669 23.609 32.107 K 2.796 In-1 15.148 23.669 23.669 32.190 L 2.546 In-1 15.149 23.675 23.675 32.498 M 2.550 In-1 15.140 23.065 23.669 32.190 M 3.446 In-1 15.151 23.675 23.675 M 41.214 In-1 15.338 23.966 23.966 32.593 M 44.214 In-1 15.338 23.966 23.966 32.593 A 1.325 In-1 15.331 24.270 24.270 32.664 B 1.022 In-1 15.331 24.270 24.270 32.664 B 1.012 In-1 15.331 24.270 24.270 32.664 B 1.012 In-1 15.331 24.270 24.270 32.664 B 1.012 In-1 15.331 24.270 24.270 24.270 E In-1 15.331 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 24.270 24.270 24.270 B 1.012 In-1 15.331 24.270 | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.735 D 2.040 In-1 15.223 23.786 23.737 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.81 23.81 32.070 I 2.909 In-1 15.094 24.125 24.125 32.808 J 1.615 In-1 15.174 23.709 23.709 32.245 J 2.381 In-1 15.175 23.801 23.805 J 23.80 J 1.615 In-1 15.176 23.609 23.609 32.107 K 2.796 In-1 15.178 23.659 32.190 L 2.546 In-1 15.150 23.675 23.675 M 2.550 In-1 15.151 23.875 23.895 32.190 M 3.446 In-1 15.152 23.675 23.675 M 41.214 In-1 15.304 19.537 26.570 M 44.214 In-1 15.338 23.966 23.966 B 1.022 In-1 15.338 23.966 23.966 B 1.022 In-1 15.331 24.270 24.270 33.007 B 1.022 In-1 15.332 24.270 24.270 32.533 B 1.113 In-1 15.330 23.920 23.920 32.533 B 1.511 In-1 15.330 23.920 23.920 32.533 B 1.511 In-1 15.330 23.920 23.533 B 1.511 In-1 15.301 23.920 23.533 B 1.511 In-1 15.302 23.920 23.533 B 1.511 In-1 15.303 23.920 23.533 B 1.511 In-1 15.303 23.920 23.533 B 1.511 In-1 15.303 23.920 23.533 B 1.511 In-1 15.304 23.920 23.523 B 1.511 In-1 25.305 23.920 23.523 23.533 B 1.511 In-1 25.305 23.920 23.920 23.533 23.5 | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.786 32.347 E 2.067 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.222 23.894 23.894 32.496 I 1.621 In-1 15.440 24.125 24.125 32.806 J 1.615 In-1 15.440 24.125 23.81 32.808 J 1.615 In-1 15.440 24.125 23.609 32.107 K 2.796 In-1 15.441 23.709 23.609 32.107 K 2.796 In-1 15.442 23.669 23.669 J 1.016 In-1 15.443 23.669 23.669 J 1.016 In-1 15.444 23.669 23.669 J 1.016 In-1 15.454 23.669 23.669 J 1.016 In-1 15.454 23.665 23.665 J 1.016 In-1 15.534 23.665 23.665 J 1.016 In-1 15.534 23.665 23.665 J 1.016 In-1 15.535 24.270 24.270 J 1.016 In-1 15.537 24.270 23.533 B 1.113 In-1 15.336 23.920 23.837 B 1.511 In-1 15.337 23.336 23.337 B 1.511 In-1 15.337 23.330 23.337 B 2.005 In-1 | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.792 32.357 D 2.040 In-1 15.223 23.786 23.733 H 2.119 In-1 15.215 23.773 23.773 32.331 H 2.119 In-1 15.216 23.894 23.894 32.496 I 1.621 In-1 15.309 23.894 23.896 J 1.615 In-1 15.109 23.609 23.609 J 1.005 In-1 15.148 23.609 23.609 J 1.005 In-1 15.151 23.675 23.875 J 1.005 In-1 15.152 23.675 23.675 J 1.005 In-1 15.153 24.270 24.270 J 20.005 In-1 15.309 23.906 23.906 J 20.005 In-1 15.318 21.278 21.278 J 20.005 In-1 15.320 23.906 23.906 J 20.005 In-1 15.331 24.270 24.270 J 20.005 In-1 15.332 24.270 24.270 J 20.005 In-1 15.333 24.270 24.270 32.644 In-1 15.330 23.920 23.920 32.331 In-1 15.321 24.378 24.378 33.346 In-1 15.322 23.800 23.900 32.370 In-1 15.322 23.800 23.800 32.316 In-1 15.322 24.378 24.378 J 24.378 In-1 15.325 In-1 15.326 24.378 33.154 In-1 15.327 24.378 33.154 In-1 15.328 In-1 15.329 24.378 24.378 In-1 15.320 24.378 33.154 In-1 15.321 24.378 24.378 J 24.378 In-1 15.322 15.323 24.378 24.378 J 24.378 In-1 25.32 | 15.235 23.805 32.374 C 1.988
In-1 15.227 23.792 23.795 32.347 E 2.040 In-1 15.223 23.736 23.736 32.347 E 2.067 In-1 15.215 23.736 23.736 32.347 E 2.067 In-1 15.225 23.834 23.844 32.496 I 2.909 In-1 15.240 24.125 24.125 32.808 J 1.615 In-1 15.140 23.609 23.609 32.107 K 2.796 In-1 15.141 23.709 23.609 32.107 K 2.796 In-1 15.142 23.821 23.821 32.396 L 1.922 In-1 15.243 23.865 23.865 32.190 L 2.546 In-1 15.244 23.065 23.669 32.190 K 2.590 In-1 15.245 23.821 23.821 32.390 M 3.446 In-1 15.246 23.665 23.669 32.190 M 3.446 In-1 15.247 23.065 23.895 32.893 M 2.550 In-1 15.348 23.665 23.965 32.893 M 12.393 In-1 15.349 23.242 23.895 32.893 M 12.393 In-1 15.349 23.242 23.966 32.533 B 1.113 In-1 15.340 23.242 23.920 23.920 23.231 B 1.511 In-1 15.340 23.320 23.920 23.331 B 1.511 In-1 15.341 24.378 24.378 24.378 F 1059 In-1 15.243 23.786 23.347 F 2.067 In-1 15.244 23.786 23.347 F 2.067 In-1 15.345 15.245 23.786 23.347 F 2.067 In-1 15.245 23.786 23.347 F 2.067 In-1 15.245 23.786 23.347 F 2.067 In-1 15.245 23.348 23.347 In-1 15.245 23.348 23.347 In-1 15.245 23.348 23.348 In-1 15.245 23.348 23.348 In-1 15.245 23.348 23.348 In-1 15.245 23.348 23.348 In-1 15.245 23.348 | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.795 32.347 E 2.040 In-1 15.223 23.736 23.736 32.347 E 2.067 In-1 15.215 23.736 23.736 32.347 E 2.067 In-1 15.222 23.834 23.844 32.496 1 1.612 In-1 15.240 24.125 24.125 32.808 J 1.615 In-1 15.140 23.609 23.609 32.107 K 2.796 In-1 15.141 23.709 23.609 32.107 K 2.796 In-1 15.142 23.821 23.821 32.396 L 1.922 In-1 15.143 23.669 23.669 32.190 K 2.590 In-1 15.144 23.705 23.805 32.498 M 2.550 In-1 15.15 23.865 23.669 32.190 K 2.596 In-1 15.15 23.865 23.669 32.190 K 2.590 In-1 15.15 23.865 23.865 32.498 M 2.550 In-1 15.15 23.865 23.669 32.190 M 3.446 In-1 15.15 23.865 23.665 32.590 M 12.393 In-1 15.31 24.70 24.270 33.007 B 1.325 In-1 15.32 23.800 23.920 23.539 B 1.511 In-1 15.32 23.786 23.341 F 1.059 In-1 15.23 23.786 23.347 F 2.067 In-1 15.23 23.786 23.347 F 2.067 In-1 15.23 24.378 23.347 F 2.067 In-1 15.23 24.378 23.341 F 2.067 In-1 15.23 24.378 23.343 G 0.712 In-1 | 15.235 23.805 23.805 32.374 C 1.986 In-1 15.227 23.792 23.792 23.357 D 2.040 In-1 15.228 23.773 23.773 23.347 E 2.067 In-1 15.229 23.894 23.894 32.346 I 1.621 In-1 15.292 23.894 23.894 32.346 I 1.621 In-1 15.292 23.894 23.894 32.346 I 1.621 In-1 15.40 24.125 23.709 32.345 J 2.399 In-1 15.174 23.709 23.609 32.107 K 2.796 In-1 15.175 23.821 23.828 J 23.89 In-1 15.185 23.855 23.869 J 23.89 In-1 15.190 23.805 23.895 J 49.87 M 12.393 In-1 15.191 23.065 23.659 J 49.87 M 14.214 In-1 15.192 23.895 23.895 M 2.550 In-1 15.193 23.905 23.895 M 23.905 In-1 15.33 24.270 24.270 33.007 B 1.022 In-1 15.31 24.378 24.378 33.347 F 1.059 In-1 15.203 23.380 23.800 32.347 F 2.067 In-1 15.203 23.3786 23.880 32.347 F 2.067 In-1 15.204 24.378 24.378 33.347 F 2.067 In-1 15.205 24.447 24.447 33.247 G 0.712 In-1 15.404 24.447 24.447 33.247 G 0.779 33.244 G 0.779 In-1 15.405 24.447 24.447 24.447 24.447 24.447 24.447 24.447 24.447 24.441 24.444 24.444 24.444 24.444 24.444 | 15.225 22.805 23.805 32.374 C 1.986 In-1 15.227 23.792 23.792 32.377 D 2.040 In-1 15.227 23.773 23.773 23.347 E 2.040 In-1 15.292 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.895 J. 1070 I 2.909 In-1 15.109 23.779 23.709 J. 1070 I 2.909 In-1 15.109 23.709 23.709 J. 1070 I 2.909 In-1 15.109 23.609 23.609 J. 100 I 1.922 In-1 15.109 23.805 23.895 J. 100 I 2.906 In-1 15.109 23.805 23.805 J. 100 I 1.922 In-1 15.109 23.805 23.809 J. 100 I 1.922 In-1 15.109 23.805 23.809 J. 100 In-1 15.109 23.805 23.809 J. 100 In-1 15.109 23.805 23.805 J. 100 In-1 15.109 23.800 23.800 J. 100 In-1 15.201 24.270 24.270 J. 10.90 In-1 15.302 23.800 23.800 J. 10.90 In-1 15.303 24.270 24.270 J. 10.90 In-1 15.304 23.800 23.800 J. 10.90 In-1 15.305 23.805 23.805 J. 10.90 In-1 15.307 24.447 24.447 33.247 G 0.779 In-1 15.308 24.477 24.447 33.144 G I. 10.90 In-1 15.601 24.378 24.378 J. 10.60 J. 10.60 J. 10.60 In-1 15.601 24.378 J. 10.80 J. 10.80 In-1 15.6 | 15.235 23.805 32.374 C 1.988 In-1 15.227 23.792 23.735 D 2.040 In-1 15.223 23.786 23.735 D 2.040 In-1 15.215 23.773 23.773 D 2.040 In-1 15.227 23.894 23.894 32.496 I 1.621 In-1 15.092 23.894 23.894 32.496 I 1.621 In-1 15.092 23.581 23.81 32.070 I 2.090 In-1 15.194 24.125 24.125 32.808 J 1.615 In-1 15.109 23.709 23.709 32.245 J 2.381 In-1 15.109 23.609 23.669 32.107 K 2.381 In-1 15.131 23.659 23.669 32.107 K 2.381 In-1 15.132 23.875 23.895 32.897 M 2.550 In-1 15.134 23.655 23.669 32.100 M 3.446 In-1 15.304 23.805 23.809 32.837 M 1.323 In-1 15.315 24.270 24.270 33.007 B 1.113 In-1 15.316 24.017 24.017 24.518 F 1.029 In-1 15.321 24.817 24.447 33.247 G 0.712 In-1 15.232 24.828 24.378 33.134 G 0.712 In-1 15.233 24.447 24.447 33.247 G 1.609 In-1 15.566 24.447 24.437 24.378 33.154 G 1.609 In-1 15.557 24.232 24.338 24.378 33.154 G 1.609 In-1 15.557 24.232 24.338 24.378 33.154 G 1.609 In-1 15.557 24.232 24.338 25.550 24.232 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24.338 24 | 15.233 23.805 32.374 C 1.988 In-1 15.227 23.792 23.737 D 2.040 In-1 15.223 23.773 23.773 32.331 H 2.119 In-1 15.224 23.773 23.773 32.331 H 2.119 In-1 15.225 23.884 23.884 32.486 1 1.621 In-1 15.402 23.884 23.884 32.486 1 1.621 In-1 15.403 23.709 23.709 32.245 J 2.381 In-1 15.109 23.609 23.609 32.107 K 2.796 In-1 15.109 23.609 23.609 32.107 K 2.796 In-1 15.101 23.885 23.885 32.248 M 2.536 In-1 15.102 23.685 23.689 32.107 K 2.796 In-1 15.103 23.685 23.689 32.107 K 2.796 In-1 15.104 23.065 23.669 32.107 K 2.346 In-1 15.105 23.695 23.669 32.107 K 2.346 In-1 15.107 23.065 23.669 32.107 K 2.346 In-1 15.108 23.065 23.669 32.100 K 1.233 In-1 15.109 23.065 23.669 32.249 M 12.333 In-1 15.204 19.537 19.537 26.570 M 14.214 In-1 15.305 23.920 23.500 32.307 B 1.313 In-1 15.202 23.800 23.920 32.347 F 1.059 In-1 15.203 23.786 23.786 23.477 F 2.067 In-1 15.204 24.378 24.378 33.430 G 0.779 In-1 15.205 24.326 24.326 23.437 G 1.407 In-1 15.473 24.376 24.378 24.378 24.378 13.347 G 1.407 In-1 15.547 24.292 24.392 24.392 24.392 13.337 G 1.407 In-1 15.473 24.177 24.17 | | Index ⁽²⁾ | 0.75 | | 0.75 | | | | 0.75 | 0.75 | 0.75 | 1.10 | | 2.00 | |--|--------|--------|--------|--------|--------|--------|------------|--------|--------|---------|---------|---------| | Borane ⁽¹⁾ Index ⁽²⁾ | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Initiator | 2.791 | 7.143 | 7.680 | 8.834 | 4.600 | 2.696 | 2.668 | 2.650 | 2.554 | 2.801 | 2.784 | 2.763 | | Initiator | In-1 | In-2 | In4 | In-5 | In-3 | | <u>1-4</u> | I-II | | | In-1 | In-1 | | Decomplexer | 2.067 | 1.974 | 1.963 | 1.938 | 2.028 | 6.779 | 8.619 | 9.675 | 15.653 | 1.699 | 2.302 | 3.046 | | Decomplexer | Ö | 9 | U | 9 | ß | Z | 0 | Ь | ò | R | R | R | | Wt. % PBMA Decomplexer Decomplexer | 32.347 | 30.900 | 30.721 | 30.337 | 31.746 | 28.473 | 27.232 | 26.520 | 22.488 | 32.470 | 32.271 | 32.025 | | Wt. % MA | 23.786 | 22.721 | 22.589 | 22.307 | 23.343 | 20.936 | 20.024 | 19.500 | 16.535 | 23.875 | 23.728 | 23.548 | | Wt. % BMA | 23.786 | 22.721 | 22.589 | 22.307 | 23.343 | 27.715 | 28.643 | 29.175 | 32.188 | 23.875 | 23.728 | 23.548 | | Wt. % MIMA W | 15.223 | 14.541 | 14.457 | 14.276 | 14.939 | 13.399 | 12.815 | 12.480 | 10.583 | 15.280 | 15.186 | 15.070 | | Example | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | Сотр 39 | Comp 40 | Comp 41 | (1) Moles of triethylborane/100 moles of (meth)acrylate ester vinyl groups (2) Moles of methacrylic acid or anhydride groups/mole of initiator amine groups | · | T | able VI: | Bond Strei | igth and So | lvent Resista | ance | |---------|-------------|----------|------------|-------------|---------------|-------------| | | l | | | Strength | | Free Fi | | | | | TFE | P | E | Solvent Res | | Example | Decomplexer | piw | N/cm | piw | N/cm | % Solids | | | | | | Strength | | Free Film | | | |---------|-------------|-------------------|-------------------|-------------------|-------------------|--------------|--------|--| | | | | PTFE | P | E | Solvent Resi | stance | | | Example | Decomplexer | piw | N/cm | piw | N/cm | % Solids | % Gel | | | 1 | С | -0 | - (1) | | | | | | | 2 | | 33 ⁽¹⁾ | 58 ⁽¹⁾ | <1 | <1 | 0.7 | 1.2 | | | | D | 30 ⁽¹⁾ | 53 ⁽¹⁾ | 2 | 4 | 1.5 | 2.2 | | | 3 | Е | 25 ⁽¹⁾ | 44 ⁽¹⁾ | <1 | 1 | 1.4 | 2.2 | | | 4 | H | 25 | 44 | 3 | 5 | 1.1 | 1.7 | | | 5 | I | 24 ⁽¹⁾ | 42 ⁽¹⁾ | 1 | 2 | 1.2 | 2.0 | | | 6 | I | 16 ⁽¹⁾ | 28 ⁽¹⁾ | <1 | <1 | 1.4 | 2.2 | | | 7 | J | 24 ⁽¹⁾ | 42 ⁽¹⁾ | 8 | 14 | . 1.1 | 1.7 | | | 8 | J | 31(1) | 54 ⁽¹⁾ | 7 | 12 | 1.2 | 1.8 | | | 9 | K | 24 ⁽¹⁾ | 42 ⁽¹⁾ | 1 | 2 | 0.9 | 1.4 | | | 10 | L | 11 | 20 | 9 | 16 | 1.2 | 1.8 | | | 11 | L | 15 | 26 | 8 | 13 | 0.8 | 1.2 | | | 12 | M | 6 | 11 | 22 | 39 | ND | ND | | | 13 | M | 13 | 22 | 21 | 37 | ND | ND | | | 14 | M | 12 | 21 | 16 | 27 | 2.4 | 4.0 | | | 15 | M | 11 | 19 | 16 | 28 | ND | ND | | | 16 | M | 11 | 20 | 6 ⁽¹⁾ | 11 ⁽¹⁾ | ND | ND | | | 17 | A | 29 ⁽¹⁾ | 51 ⁽¹⁾ | <1 | <1 | 35.2 | 53.6 | | | 18 | В | 24 ⁽¹⁾ | 42 ⁽¹⁾ | 5 | 9 | 44.0 | 66.8 | | | 19 | В | 19 ⁽¹⁾ | 33 ⁽¹⁾ | 7 | 12 | 28.7 | 43.8 | | | 20 | В | 17 ⁽¹⁾ | 29 ⁽¹⁾ | - 5 | 9 | 61.4 | 93.5 | | | 21 | В | 13 | 23 | 2 - | 3 | 50.4 | 76.5 | | | 22 | F | 21 ⁽¹⁾ | 37 ⁽¹⁾ | 11 ⁽¹⁾ | 18 ⁽¹⁾ | 41.0 | 62.1 | | | 23 | F | 32 ⁽¹⁾ | 56 ⁽¹⁾ | 2 | 4 | 43.9 | 66.6 | | | 24 | G | <1 | 1 | 16 | 27 | 57.8 | 87.7 | | | 25 | G | 8 | 15 | 19 ⁽¹⁾ | 33 ⁽¹⁾ | 59.1 | 89.7 | | | 26 | G | 13 | 23 | 8 | 14 | 57.6 | 87.4 | | | 27 | G | 16 ⁽¹⁾
| 28 ⁽¹⁾ | 7 | 13 | 63.0 | 95.3 | | | 28 | G | 18 ⁽¹⁾ | 31 ⁽¹⁾ | 3 | 5 | 60.8 | 92.2 | | | , 29 | G | 19 ⁽¹⁾ | 32 ⁽¹⁾ | <1 | <1 | 61.5 | 93.3 | | | 30 | G | 21 ⁽¹⁾ | 37 ⁽¹⁾ | 1 | 2 | 64.4 | 97.7 | | | 31 | G | 28 ⁽¹⁾ | 49 ⁽¹⁾ | 7 | 12 | 60.1 | 89.1 | | | 32 | G | 30 ⁽¹⁾ | 53 ⁽¹⁾ | 22 ⁽¹⁾ | 39 ⁽¹⁾ | 60.1 | 89.1 | | | 33 | G | 10 | 18 | 23 | 40 | 54.5 | 80.3 | | | 34 | G | 25 ⁽¹⁾ | 44 ⁽¹⁾ | <1 | <1 | 62.8 | 94.3 | | | 35 | N | 12 | 20 | 14. | 24 | 14.0 | 20.1 | | | 36 | 0 | 8 | 15 | 10 | 18 | 31.2 | 43.8 | | | 37 | P | 9 | 16 | 10 | 18 | 36.7 | 51.1 | | | 38 | Q | 5 | 9 | 5 | 9 | 48.9 | 64.5 | | | | | | Bond | Free Film | | | | | |---------|-------------|-------------------|-------------------|------------------|-------------------|--------------------|-------|--| | | | P | TFE | P | E | Solvent Resistance | | | | Example | Decomplexer | piw | N/cm | piw | N/cm | % Solids | % Gel | | | Comp 39 | R | 7 | 12 | 4 ⁽¹⁾ | 6(1) | 1.3 | 2.0 | | | Comp 40 | R . | 9 | 16 | 4 ⁽¹⁾ | 6 ⁽¹⁾ | 2.0 | 3.1 | | | Comp 41 | R | 11 ⁽²⁾ | 19 ⁽²⁾ | 6 ⁽³⁾ | 10 ⁽³⁾ | 0.4 | 0.6 | | ND = Not determined (1) Adherend tore 5 10 15 20 PTFE. - (2) 1 inch (2.5 cm) wide adherend - (3) 15 mil (0.4 mm) thick PE used Each bond strength value in Table VI is the average reading in pounds per inch width (piw) or Newtons per centimeter (N/cm) over the length of the bond which was pulled. In general, preferred bond strengths are at least 5 piw (9 N/cm). The data in Table VI indicate good to outstanding bond formation for all of the formulations on either PE and PTFE, and for many formulations on both PE and The data of Table VI also show that decomplexers of the present invention can advantageously provide both a reduced level of mobile constituents and improved solvent resistance compared to the comparative decomplexer (methacrylic acid). More specifically, Examples 17-38 provided % Solid values in the range of 14 to 64 and % Gel values in the range of 20 to 98, while the Comparative Examples 39-41 provided % Solid values in the range of 0.4-2.0 and % Gel values in the range of 0.6-3.1. It is noted that the decomplexers of Examples 17-38 comprised free radically polymerizable groups (namely, 1,1-disubstituted alkenes and 1,2-disubstituted alkenes which are part of an α , β -unsaturated carbonyl structure). Such decomplexers are capable of covalently bonding with the polyamine portion of the organoborane amine complex to form decomplexer-amine reaction products comprising more than one free radically polymerizable group. As a consequence, these decomplexers provide adhesive compositions having both a reduced level of mobile consituents and good solvent resistance. Such decomplexers are preferred for the present invention. It is further noted that the decomplexer of Comparative Examples 39-41 (methacrylic acid) comprised a 1,1-disubstituted alkene gr up which is capable of ionically (as opposed to covalently) bonding with the polyamine portion of the organoborane amine complex. As a consequence, this decomplexer was unable to provide solvent resistance. Other observations from the data of Table VI include the following: Examples 24-29 illustrate that the initiator and anhydride concentrations can be independently varied to optimize adhesive bond strengths without adversely affecting solvent resistance. Examples 30-34 illustrate that a variety organoborane amine complexes may be utilized with the decomplexers of the invention to provide excellent adhesive bond strength values and solvent resistance. 10 15 Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and spirit of the invention. It should be understood that this invention is not limited to the illustrative embodiments set forth herein. #### **CLAIMS** The embodiments for which an exclusive property or privilege is claimed are defined as follows: 5 - 1. An initiator system capable of initiating the polymerization of acrylic monomers comprising (1) an organoborane amine complex and (2) a decomplexer comprising at least one anhydride group. - 2. An initiator system according to Claim 1 wherein said decomplexer comprises at least one free radically polymerizable group. - 3. An initiator system according to Claim 1 wherein said decomplexer comprises at least one free radically polymerizable group and said organoborane amine complex comprises at least two amine groups. - 4. An initiator system according to Claim 1 wherein said decomplexer has the structure: $$R_1$$ C C C R_2 wherein each R_1 and R_2 are independently selected from the group consisting of aliphatic, cycloaliphatic and aromatic groups. 5. An initiator system according to Claim 1 wherein said decomplexer has the following structure: wherein R₃ is a divalent organic radical. 5 - 6. An initiator system according to Claim 1 wherein said decomplexer is selected from the group consisting of methacrylic anhydride, itaconic anhydride, maleic anhydride and isobutenyl succinic anhydride. - 7. An initiator system according to Claim 1 wherein said organoborane amine complex comprises at least two amine groups. - 8. An initiator system according to Claim 1 wherein said complex has the structure: $$\begin{pmatrix} R_8 \\ R_9 \longrightarrow B \\ R_{10} \end{pmatrix} * Am$$ - wherein R₈ is selected from the group consisting of alkyl groups having 1 to 10 carbon atoms; R₉ and R₁₀ are independently selected from the group consisting of alkyl groups having 1 to 10 carbon atoms and phenyl-containing groups; the value of v is selected so as to provide a 0.5:1 to 4:1 ratio of primary or secondary amine nitrogen atoms to boron atoms in the complex; and Am is an amine. - 9. A polymerizable acrylic composition comprising: - a) at least one acrylic monomer; - b) an effective amount of an organoborane amine complex; and - an effective amount of a decomplexer comprising at least one anhydride group, said decomplexer being reactive with said amine to liberate the organoborane to initiate polymerization of the at least one acrylic monomer. - 10. A polymerizable acrylic composition according to Claim 9 wherein said decomplexer comprises at least one free radically polymerizable group and said organoborane amine complex comprises at least two amine groups. - 25 11. A polymerizable acrylic composition according to Claim 9 wherein said decomplexer has the structure: wherein each R₁ and R₂ are independently selected from the group consisting of aliphatic, cycloaliphatic and aromatic groups. 12. A polymerizable acrylic composition according to Claim 9 wherein 5 wherein said decomplexer has the following structure: wherein R₃ is a divalent organic radical. 13. A polymerized acrylic adhesive composition according to Claim 9. 14. A bonded composite comprising a first substrate, a second substrate and a polymerized acrylic adhesive composition according to Claim 9 that adhesively bonds the first and second substrates together. 15. A method of initiating the polymerization of at least one acrylic monomer, the method comprising the steps of a) providing at least one acrylic monomer; 15 b) blending the at least one acrylic monomer with the components of a polymerization initiator system, said system comprising: i) an organoborane amine complex, - ii) an effective amount of a decomplexer comprising at least one anhydride group, said decomplexer being reactive with amine for liberating the organoborane to initiate polymerization of the at least one acrylic monomer; and - c) initiating polymerization of the at least one acrylic monomer. - 25 16. A method of increasing the solvent resistance of a polymerized acrylic adhesive composition obtained by organoborane-initiated polymerization of acrylic monomer, said method comprising the steps of - a) providing at least one acrylic monomer; - b) providing an organoborane amine complex comprising at least two amine groups; - providing a decomplexer comprising at least one anhydride group and at least one free radically polymerizable group; - d) blending components a), b) and c), and; - e) initiating polymerization of the at least one acrylic monomer and continuing polymerization until a solvent resistant acrylic adhesive composition is obtained. 10 # INTERNATIONAL SEARCH REPORT Internat Application No PCT/US 96/15706 | A. CLASSI
IPC 6 | FICATION F SUBJECT MATTER C08F20/12 C09J4/02 | | | | | | | | |
---|---|--|-----------------------|--|--|--|--|--|--| | According to | o International Patent Classification (IPC) or to both national classifi | cation and IPC | | | | | | | | | B. FTELDS | SEARCHED | | | | | | | | | | IPC 6 | ocumentation searched (classification system followed by classification COBF CO9J | | | | | | | | | | | ion searched other than minimum documentation to the extent that so the extent that so the extent that so that so the extent that so that so that so that the consulted during the international search (name of data base | | ched | | | | | | | | 2300000000 | are very consumer our mil are memorial and mil frame of raise teams. | and, while product, but the transfer of | | | | | | | | | C. DOCUM | IENTS CONSIDERED TO BE RELEVANT | | | | | | | | | | Category * | Citation of document, with indication, where appropriate, of the re- | levant passages | Relevant to claim No. | | | | | | | | A | WO,A,95 22567 (MINNESOTA MINING A
MANUFACTURING CO.) 24 August 1995 | | | | | | | | | | A | US,A,5 106 928 (M. SKOULTCHI) 21 1992 cited in the application | April | | | | | | | | | A | EP,A,O 561 352 (NATIONAL STARCH A CHEMICAL INVESTMENT HOLDING CORP. September 1993 cited in the application | | | | | | | | | | A | US,A,5 310 835 (M. SKOULTCHI) 10 cited in the application | May 1994 | Pur | ther documents are listed in the continuation of box C. | X Patent family members are listed in | annex. | | | | | | | | 'A' documents of the consistency of the country | *Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance: "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed "C" later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone to considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document, such combination being obvious to a person skilled in the art. "A" document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is considered to inventive an inventive step when the document is combined with one or more other such document is combined with one or more other such document, such combination being obvious to a person skilled in the art. "A" document member of the same patent family | | | | | | | | | | 1. | e actual completion of the international search 23 January 1997 | Date of mailing of the international sear
- 5, 02, 97 | ch report | | | | | | | | | mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 | Authorized officer Cauwenberg, C | | | | | | | | # INTERNATIONAL SEARCH REPORT Information on patent family members Internat Application No PCT/US 96/15706 | Patent document
cited in search report | Publication date | Patent family | Publication | |---|------------------|---------------|-------------| | | | member(s) | date | | WO-A-9522567 | 24-08-95 | AU-A- 29716 | 95 04-09-95 | | . • | , | EP-A- 07465 | | | *********** | | US-A- 55390 | 70 23-07-96 | | US-A-5106928 | 21-04-92 | DE-D- 692010 | 93 16-02-95 | | | | DE-T- 692010 | | | | | EP-A- 05114 | | | | • • | ES-T- 20679 | | | | • | HK-A- 511 | 95 13-04-95 | | | • | JP-A- 50982 | | | | | JP-B- 70722 | | | • | | KR-B- 95095 | | | | | US-A- 51438 | 84 01-09-92 | | EP-A-561352 | 22-09-93 | US-A- 52868 | 21 15-02-94 | | | | AU-A- 33054 | | | | | CA-A- 20917 | | | | | JP-A- 60932 | | | | | JP-B- 71162 | | | | | KR-B- 96084 | | | ******* | | US-A- 53767 | 46 27-12-94 | | US-A-5310835 | 10-05-94 | NONE | |